| 注册
首页|期刊导航|密码学报(中英文)|车联网环境下面向异构数据的隐私保护联邦学习

车联网环境下面向异构数据的隐私保护联邦学习

张宇 咸鹤群

密码学报(中英文)2025,Vol.12Issue(3):545-564,20.
密码学报(中英文)2025,Vol.12Issue(3):545-564,20.DOI:10.13868/j.cnki.jcr.000780

车联网环境下面向异构数据的隐私保护联邦学习

PPHSFL:Privacy-Preserving Federated Learning Towards Heterogeneous System in IoV

张宇 1咸鹤群2

作者信息

  • 1. 密码与网络空间安全 (黄埔) 研究院,广州 510535||青岛大学 计算机科学技术学院,青岛 266071
  • 2. 青岛大学 计算机科学技术学院,青岛 266071||密码与网络空间安全 (黄埔) 研究院,广州 510535
  • 折叠

摘要

Abstract

With the rapid development of technologies in the fields of Internet of Vehicles(IoV)and intelligent manufacturing,the integration of IoV and artificial intelligence has become a new direc-tion for the advancement of smart transportation.This study proposes a privacy-preserving federated learning framework,for information sharing in IoV environments,aiming to address the issues of incon-sistent client training conditions,data drift,and model data privacy leakage in data sharing for IoV.The mobility and distributed nature of smart vehicles pose special challenges to federated learning.The framework incorporates performance-enhanced heterogeneous data federated learning algorithm,which modifies the training optimization steps and propose a generalized update approach consider-ing additional factors during the aggregation process.Essentially,it employs a normalized averaging approach,ensuring faster loss convergence in heterogeneous scenarios.To prevent inference of privacy information by honest yet curious servers and external adversaries from transmitted parameters,exist-ing solutions employ differential privacy mechanisms,which add noise to local parameters,to protect them from leakage.Nevertheless,the added noise can disrupt the learning process and degrade the effectiveness of the trained models.A performance-boosting differential privacy algorithm is proposed,which introduces regularization terms in local optimization objective function,to improve the robust-ness of training models to injected noise,reduce the impact of noise on IoV devices during training,and provide total privacy budget statistics.The framework's performance is evaluated on synthetic and real-world heterogeneous datasets.The first algorithm of framework outperforms existing hetero-geneous data optimization algorithms,while the another algorithm demonstrates better classification performance at the same level of privacy protection compared to existing differential privacy-based federated learning algorithms,making it more suitable for IoV applications.

关键词

车联网/联邦学习/非独立同分布数据/差分隐私/效用隐私平衡

Key words

Internet of Vehicles/federated learning/non-IID/differential privacy/utility-privacy tradeoff

分类

信息技术与安全科学

引用本文复制引用

张宇,咸鹤群..车联网环境下面向异构数据的隐私保护联邦学习[J].密码学报(中英文),2025,12(3):545-564,20.

基金项目

国家自然科学基金(62102212) (62102212)

山东省自然科学基金(ZR2021QF030)National Natural Science Foundation of China(62102212) (ZR2021QF030)

Natural Science Foundation of Shandong Province(ZR2021QF030) (ZR2021QF030)

密码学报(中英文)

OA北大核心

2095-7025

访问量0
|
下载量0
段落导航相关论文