| 注册
首页|期刊导航|森林工程|基于改进YOLOv8模型的木材缺陷检测

基于改进YOLOv8模型的木材缺陷检测

颜世运 张慧斌 籍浩恺 丁禹程 白岩 杨春梅

森林工程2025,Vol.41Issue(4):750-760,11.
森林工程2025,Vol.41Issue(4):750-760,11.DOI:10.7525/j.issn.1006-8023.2025.04.010

基于改进YOLOv8模型的木材缺陷检测

Research on Wood Defect Detection Based on Improved YOLOv8 Model

颜世运 1张慧斌 1籍浩恺 1丁禹程 2白岩 1杨春梅2

作者信息

  • 1. 东北林业大学 计算机与控制工程学院,哈尔滨 150040
  • 2. 东北林业大学 机电工程学院,哈尔滨 150040
  • 折叠

摘要

Abstract

To solve the problem that the target detection algorithm is prone to leakage and lacks detection accuracy in de-tecting wood surface defects,this paper proposes an improved YOLOv8 model(YOLOv8-CBW,C,B and W are abbre-viations for CondSiLU,BiFPN and Wise-IoU)and constructs a self-made dataset containing various wood defects.By op-timizing the original YOLOv8 algorithm and combining CondConv(conditional convolution)with SiLU(sigmoid-weighted linear unit)to form the CondSiLU module instead of the traditional convolution module,the flexibility of feature extraction is improved;the bidirectional feature pyramid network(BiFPN)is introduced to enhance the multi-scale fea-ture fusion capability;and the Wise-IoU(weighted intersection over union)loss function replaces the CIoU(complete intersection over union)to improve the adaptability and generalization performance of the model to low-quality samples.The experimental results show that the improved YOLOv8-CBW model improves the mAP50(mean average precision at IoU threshold 0.50)and mAP50-95(mean average precision over IoU thresholds from 0.50 to 0.95)by 3.7%and 3.9%,respectively,compared with the YOLOv8 model,and it shows higher precision and stability in complex wood de-fect detection tasks.The research in this paper provides new ideas for wood defect detection tasks and has good practical application prospects.

关键词

木材检测/深度学习/损失函数/条件卷积/特征融合/YOLOv8/缺陷识别

Key words

Wood detection/deep learning/loss function/conditional convolution/feature fusion/YOLOv8/defect identification

分类

信息技术与安全科学

引用本文复制引用

颜世运,张慧斌,籍浩恺,丁禹程,白岩,杨春梅..基于改进YOLOv8模型的木材缺陷检测[J].森林工程,2025,41(4):750-760,11.

基金项目

黑龙江省重大成果转化项目(CG23013) (CG23013)

黑龙江省"双一流"学科协同创新成果项目(LJGXCG2024-F16). (LJGXCG2024-F16)

森林工程

OA北大核心

1006-8023

访问量0
|
下载量0
段落导航相关论文