基于Levenberg-Marquardt算法的静态地层温度反演方法OA北大核心
Static formation temperature estimation method based on the Levenberg-Marquardt algorithm
静态地层温度(static formation temperature,SFT)是表征地热及油气储层热状态的重要参数,是储层特性评价与开发方案设计的关键.传统获取SFT的方法多依赖现场长期测试或物理模拟,不仅周期长,成本高,且在数据不完整或受扰动条件下预测精度有限.为提升SFT的预测效率与准确性,提出一种基于Levenberg-Marquardt(LM)算法的非线性拟合方法,结合Horner-LIU method(HLM)模型构建SFT预测公式,并利用LM算法对模型参数进行优化.选取6组来自地热井与油井的实际井底温度(bottom hole temperature,BHT)数据进行验证,结果表明,基于LM算法拟合HLM模型的新方法在仅有少量BHT数据点(如前3~5个数据点)的情况下,依然能够实现高精度反演预测.所有数据集的预测偏差百分比均小于3.5%,回归系数均大于0.987,模型拟合效果优良且稳定性强.同时,通过泰尔不等系数(Theil inequality coefficient,TIC)对预测精度进行进一步评估,所有样本TIC值均低于3%,验证了所提方法在实际应用中的高效性与可靠性.
Static formation temperature(SFT)is a crucial parameter for assessing the thermal state of geothermal and hydrocarbon reservoirs,playing a vital role in reservoir characterization and development planning.Traditional SFT estimation methods typically rely on long-term field measurements or physical simulations,which are often time-consuming,costly,and sensitive to data incompleteness or external disturbances.To enhance the efficiency and accuracy of SFT estimation,this study proposes a nonlinear fitting method based on the Levenberg-Marquardt(LM)optimization algorithm.The approach integrates the Horner-LIU method(HLM)model to establish the predictive relationship and utilizes the LM algorithm for iterative optimization of the model parameters.Six sets of bottom hole temperature(BHT)data from geothermal and petroleum wells were used for validation.Results indicate that the proposed method achieves high prediction accuracy using only a few early BHT data points(e.g.,the first 3 to 5 measurements).All datasets yielded prediction errors below 3.5%,with coefficients of determination(R2)exceeding 0.987,demonstrating excellent fitting performance and model stability.Furthermore,the Theil inequality coefficient(TIC)is employed to assess prediction accuracy under limited data conditions,achieving all TIC values remaining below 3%,confirming the robustness and practical reliability for applications of the proposed approach.
黄亚;万扶桑;王中鹏;王磐;朱昱昊
湖南继善高科技有限公司,湖南 长沙 410017中国地质大学(北京)能源学院,北京 100083中国地质大学(北京)能源学院,北京 100083中国石油长庆油田分公司油气工艺研究院,陕西 西安 710016中石油深圳新能源研究院有限公司,广东 深圳 518063
能源科技
地热工程Horner-LIU method模型井底温度静态地层温度关井时间Levenberg-Marquardt算法
geothermal engineeringHorner-LIU method modelbottom hole temperaturestatic formation tempera-tureshut-in timeLevenberg-Marquardt algorithm
《深圳大学学报(理工版)》 2025 (4)
396-402,7
Shaanxi Provincial Science and Technology Department's Competitive Project(YJGCS23SFW0012) 陕西省科技厅揭榜挂帅资助项目(YJGCS23SFW0012)
评论