| 注册
首页|期刊导航|深圳大学学报(理工版)|基于贝叶斯深度学习的敌方作战飞机机动策略识别

基于贝叶斯深度学习的敌方作战飞机机动策略识别

袁银龙 张思洁 程赟 华亮

深圳大学学报(理工版)2025,Vol.42Issue(4):437-446,10.
深圳大学学报(理工版)2025,Vol.42Issue(4):437-446,10.DOI:10.3724/SP.J.1249.2025.04437

基于贝叶斯深度学习的敌方作战飞机机动策略识别

Maneuver strategy recognition technology for enemy combat aircraft based on Bayesian deep learning

袁银龙 1张思洁 1程赟 1华亮1

作者信息

  • 1. 南通大学电气与自动化学院,江苏 南通 226019
  • 折叠

摘要

Abstract

Enhancing identification of enemy combat aircraft maneuver strategies is a critical factor in improving air combat decision-making capabilities.As traditional deep learning models often show overconfidence in complex and variable combat environment,and it is difficult to evaluate the uncertainty,a combat aircraft maneuver strategy recognition method based on Bayesian deep learning is proposed.The method employs Bayesian variational inference and multivariate Gaussian distribution to construct a multi-layer perceptron-based Bayesian deep learning(BDL-MLP)probabilistic model.A gradient balancing factor is introduced to reduce the imbalance between complexity cost gradient and likelihood cost gradient,and then Bayes backpropagation algorithm is used for model training and parameter optimization.Based on the virtual air combat simulation platform AirFlightSim developed in Unity3D software,BDL-MLP,multilayer perceptron(MLP),AlexNet and LeNet models are used to classify and evaluate the data sets of combat aircraft motion scenes with varying degrees of blur(blur radii of 0,15,31,45,and 61 pixels,respectively).Results show that,on the five datasets constructed with the aforementioned blur radii,the maneuver strategy identification accuracy of the BDL-MLP model showed average improvements of 0.43%,0.99%,1.19%,1.98%,and 2.36%compared to the MLP,AlexNet,and LeNet models,respectively.Moreover,the BDL-MLP model has the best performance in robustness and feature extraction abilities for complex data,and can quantify the prediction uncertainty.The strategy recognition method of combat aircraft maneuvering based on Bayesian deep learning can provide valuable insights for the research and development of military intelligent auxiliary combat decision-support systems.

关键词

人工智能/贝叶斯深度学习/变分推理/概率建模/机动策略识别/梯度平衡因子/智能辅助作战系统

Key words

artificial intelligence/Bayesian deep learning/variational inference/probabilistic modeling/maneuver strategy recognition/gradient balance factor/intelligent assisted combat system

分类

信息技术与安全科学

引用本文复制引用

袁银龙,张思洁,程赟,华亮..基于贝叶斯深度学习的敌方作战飞机机动策略识别[J].深圳大学学报(理工版),2025,42(4):437-446,10.

基金项目

National Natural Science Foundation of China(62473216) (62473216)

Natural Science Foundation of Nantong City(JC2023006) 国家自然科学基金资助项目(62473216) (JC2023006)

南通市自然科学基金资助项目(JC2023006). (JC2023006)

深圳大学学报(理工版)

OA北大核心

1000-2618

访问量0
|
下载量0
段落导航相关论文