| 注册
首页|期刊导航|无线电工程|基于改进YOLOv10的白酒瓶盖缺陷检测算法

基于改进YOLOv10的白酒瓶盖缺陷检测算法

吴佳坤 卿粼波 谢建斌 郑建国 李益

无线电工程2025,Vol.55Issue(7):1440-1447,8.
无线电工程2025,Vol.55Issue(7):1440-1447,8.DOI:10.3969/j.issn.1003-3106.2025.07.009

基于改进YOLOv10的白酒瓶盖缺陷检测算法

Improved YOLOv10-based Defect Detection Algorithm for Liquor Bottle Caps

吴佳坤 1卿粼波 1谢建斌 1郑建国 2李益2

作者信息

  • 1. 四川大学 电子信息学院,四川成都 610041
  • 2. 四川省隆鑫科技包装有限公司,四川遂宁 629200
  • 折叠

摘要

Abstract

In view of the problem of cap defects in the liquor production process,YOLOv10-the latest product of the YOLO series-is outstanding due to its high efficiency and accuracy.However,when applied to cap defect detection,it still has limitations due to challenges such as variable defect sizes,abundant local features,and unbalanced samples.Therefore,an improved liquor cap defect detection algorithm based on improved YOLOv10.Firstly,the Slide Loss function is introduced to eliminate the imbalance of positive and negative samples in the cap dataset.Secondly,the deformable convolution enhancement C2f module is used to mitigate the influence of diverse defect geometries on the convolution.In addition,the Large-Separable-Kernel-Attention(LSKA)module is introduced to improve the computational efficiency and memory utilization of the model.Then,the Partial Self-Attention(PSA)mechanism of the backbone network is replaced by the Convolutional Block Attention Module(CBAM),enhancing the model's ability to capture local features.Finally,the Content-Aware ReAssembly of Features(CARAFE)upsampling module is introduced to improve the accuracy.Experimental results show that compared with the original YOLOv10 model,the floating-point operations of the proposed model is reduced by 9%,and the average accuracy is increased by 3.1%to 76.8%,which effectively improves the accuracy of cap defect detection.

关键词

缺陷检测/白酒瓶盖/YOLOv10/损失函数/可变形卷积/注意力机制/上采样算子

Key words

defect detection/liquor bottle cap/YOLOv10/loss function/deformable convolution/attention mechanism/upsampling operator

分类

信息技术与安全科学

引用本文复制引用

吴佳坤,卿粼波,谢建斌,郑建国,李益..基于改进YOLOv10的白酒瓶盖缺陷检测算法[J].无线电工程,2025,55(7):1440-1447,8.

基金项目

四川大学-遂宁校市合作专项项目(2022CDSN-11)Special Project for Sichuan University-Suining City Cooperation(2022CDSN-11) (2022CDSN-11)

无线电工程

1003-3106

访问量1
|
下载量0
段落导航相关论文