| 注册
首页|期刊导航|信阳师范大学学报(自然科学版)|基于贝叶斯优化的支持向量回归预测帕金森病严重程度研究

基于贝叶斯优化的支持向量回归预测帕金森病严重程度研究

王敬 王朋威 谢晓 韩红芳

信阳师范大学学报(自然科学版)2025,Vol.38Issue(3):297-303,7.
信阳师范大学学报(自然科学版)2025,Vol.38Issue(3):297-303,7.DOI:10.3969/j.issn.2097-583X.2025.03.007

基于贝叶斯优化的支持向量回归预测帕金森病严重程度研究

Predicting Parkinson's disease severity using support vector regression based on Bayesian optimization

王敬 1王朋威 1谢晓 1韩红芳2

作者信息

  • 1. 信阳师范大学 计算机与信息技术学院/河南省教育大数据分析与应用重点实验室,河南 信阳 464000
  • 2. 上海应用技术大学 计算机科学与信息工程学院,上海 201418
  • 折叠

摘要

Abstract

Based on multimodal data from public datasets,including demographic characteristics,clinical features and imaging features,a support vector regression model optimized through Bayesian optimization was proposed to accurately predict the severity of Parkinson's disease.Experimental results demonstrated that the model not only exhibited high accuracy in predicting Parkinson's disease severity but also showed significant explanatory power.Through feature importance analysis,the key features that contribute most significantly to the predictive model were effectively identified,which not only provides a solid scientific basis for clinical management and treatment decisions in Parkinson's disease,but also opens up new research perspectives for in-depth exploration of the pathological mechanisms of this disease.

关键词

帕金森病/支持向量回归/贝叶斯优化/多模态数据分析/功能核磁共振成像

Key words

Parkinson's disease/support vector regression/Bayesian optimization/multimodal data analysis/functional magnetic resonance imaging

分类

医药卫生

引用本文复制引用

王敬,王朋威,谢晓,韩红芳..基于贝叶斯优化的支持向量回归预测帕金森病严重程度研究[J].信阳师范大学学报(自然科学版),2025,38(3):297-303,7.

基金项目

国家自然科学基金项目(31900710) (31900710)

信阳师范大学南湖学者奖励计划青年项目 ()

信阳师范大学学报(自然科学版)

1003-0972

访问量0
|
下载量0
段落导航相关论文