| 注册
首页|期刊导航|郑州大学学报(工学版)|基于改进YOLOv8的遗留物品检测算法

基于改进YOLOv8的遗留物品检测算法

张震 葛帅兵 陈可鑫 李友好 黄伟涛

郑州大学学报(工学版)2025,Vol.46Issue(4):40-46,7.
郑州大学学报(工学版)2025,Vol.46Issue(4):40-46,7.DOI:10.13705/j.issn.1671-6833.2025.04.010

基于改进YOLOv8的遗留物品检测算法

Abandoned Object Detection Algorithm Based on Improved YOLOv8

张震 1葛帅兵 2陈可鑫 3李友好 4黄伟涛4

作者信息

  • 1. 郑州大学 电气与信息工程学院,河南 郑州 450001
  • 2. 郑州大学 河南先进技术研究院,河南 郑州 450003
  • 3. 珠海优特电力科技股份有限公司,广东 珠海 519000
  • 4. 河南汇融油气技术有限公司,河南 郑州 450001
  • 折叠

摘要

Abstract

An abandoned object detection algorithm based on improved YOLOv8 was proposed to address the diffi-culties of traditional background subtraction based abandoned object detection algorithms in dealing with crowded environments,small targets,occlusion,and light changes,as well as the low accuracy of models based on deep learning methods.Firstly,dynamic upsampling DySample was used to replace the nearest neighbor upsampling,op-timizing the upsampling process,and increasing the model's generalization ability.Secondly,the downsampling convolution was replaced with the efficient lightweight ADown module which reduced the overall model parameters while improving the detection accuracy of the algorithm.In addition,the introduction of EMA attention mechanism optimized the feature extraction process,enhanced feature extraction capabilities,and improved the effectiveness of small object detection.The experimental results showed that the improved model YOLO-DAE achieved P,R,and mAP@50 and mAP@50:95 was 93.4%,87.7%,91.7%,and 80.2%,respectively,which was 1.8,1.6,1.2,and 2.1 percentage points higher than the original YOLOv8s.And the average accuracy mAP@50 and mAP@50:95 was higher than YOLOv5s r6.0,YOLOv6s v3.0,YOLOv7s AF,and YOLOv9s,effectively improving the abili-ty to detect abandoned object.

关键词

遗留物品检测/YOLOv8算法/EMA注意力机制/DySample模块/ADown模块

Key words

abandoned object detection/YOLOv8 algorithm/EMA attention mechanisms/DySample module/A-Down module

分类

信息技术与安全科学

引用本文复制引用

张震,葛帅兵,陈可鑫,李友好,黄伟涛..基于改进YOLOv8的遗留物品检测算法[J].郑州大学学报(工学版),2025,46(4):40-46,7.

基金项目

河南省重点研发专项(231111211600) (231111211600)

河南省重大公益专项(201300311200) (201300311200)

郑州大学学报(工学版)

OA北大核心

1671-6833

访问量0
|
下载量0
段落导航相关论文