| 注册
首页|期刊导航|兵工自动化|基于注意力机制的中医实体关系抽取模型

基于注意力机制的中医实体关系抽取模型

李旻哲 刘华 殷继彬

兵工自动化2025,Vol.44Issue(6):17-22,6.
兵工自动化2025,Vol.44Issue(6):17-22,6.DOI:10.7690/bgzdh.2025.06.005

基于注意力机制的中医实体关系抽取模型

Model of TCM Entity Relation Extraction Based on Attention Mechanism

李旻哲 1刘华 2殷继彬1

作者信息

  • 1. 昆明理工大学信息与自动化学院,昆明 650500
  • 2. 昆明理工大学发展与规划处,昆明 650500
  • 折叠

摘要

Abstract

In order to solve the problem of poor entity relation extraction caused by the complexity and diversity of entity relations in traditional Chinese medicine(TCM),a relation extraction model(r-BERT-BiLSTM-attention-textCNN,RBBAT)based on attention mechanism and multi-model fusion is proposed.The model is composed of relation extraction pre-training model(r-BERT),bidirectional long/short-term memory neural network(BiLSTM),Attention layer and TextCNN;In the experiment,the relevant medical records of the department of gastroenterology published on various medical record platforms in recent years were selected,and five entity relationships were extracted,including symptom-disease name,symptom-syndrome,tongue-syndrome,pulse-syndrome,and syndrome-treatment.The experimental results show that compared with several commonly used relation extraction models,the proposed fusion model has the best extraction ability in the four entity relations of symptom-disease name,symptom-syndrome,tongue picture-syndrome,and syndrome-treatment method.

关键词

关系抽取/中医案例/预训练模型/注意力机制/TextCNN

Key words

relation extraction/TCM case/pre-training model/attention mechanism/TextCNN

分类

信息技术与安全科学

引用本文复制引用

李旻哲,刘华,殷继彬..基于注意力机制的中医实体关系抽取模型[J].兵工自动化,2025,44(6):17-22,6.

兵工自动化

OA北大核心

1006-1576

访问量0
|
下载量0
段落导航相关论文