| 注册
首页|期刊导航|电子科技|基于深度学习的关系抽取研究进展

基于深度学习的关系抽取研究进展

沈依宁 王一然 吴聪

电子科技2025,Vol.38Issue(7):40-49,10.
电子科技2025,Vol.38Issue(7):40-49,10.DOI:10.16180/j.cnki.issn1007-7820.2025.07.006

基于深度学习的关系抽取研究进展

Research Progress of Relation Extraction Based on Deep Learning

沈依宁 1王一然 1吴聪2

作者信息

  • 1. 上海理工大学 健康科学与工程学院,上海 200093||长海医院 临床研究中心,上海 200433
  • 2. 长海医院 临床研究中心,上海 200433
  • 折叠

摘要

Abstract

In natural language processing,as the core task,the research direction of entity relation extraction task has gradually shifted from rule-based learning and traditional machine learning to deep learning.At present,deep learning relationship extraction models widely use convolutional neural networks,recurrent neural networks and graph neural networks.This study summarizes the excellent relationship extraction models in each neural network,shows the evolution direction of each model by tracing the development history and trend of the model,and makes a comparative analysis of each method and model.Due to the continuous improvement of attention mechanism and other methods,the semantic analysis ability of relational extraction model has been significantly enhanced.In this study,the relevant improvement methods are reviewed,and the characteristics and experimental results of each method are described.This study introduces the common data sets in the field of relational extraction,and summarizes and com-pares the models with the best performance on each data set.The challenges in relation extraction are summarized and the solutions are proposed.

关键词

关系抽取/深度学习/神经网络/信息抽取/知识图谱/卷积/Transformer/注意力

Key words

relation extraction/deep learning/neural network/information extraction/knowledge graph/convolu-tion/Transformer/attention

分类

信息技术与安全科学

引用本文复制引用

沈依宁,王一然,吴聪..基于深度学习的关系抽取研究进展[J].电子科技,2025,38(7):40-49,10.

基金项目

海军军医大学"三航"军事医学人才项目(2019-YH-09) (2019-YH-09)

基础加强计划技术领域基金(2019-JCJQ-JJ-066)Naval Medical Universit"Three Hangs"Military Medical Talent Project(2019-YH-09) (2019-JCJQ-JJ-066)

Basic Strengthening Plan Technology Field Fund Project(2019-JCJQ-JJ-066) (2019-JCJQ-JJ-066)

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文