| 注册
首页|期刊导航|电子科技|基于灰度梯度共生矩阵的快速布匹瑕疵检测算法

基于灰度梯度共生矩阵的快速布匹瑕疵检测算法

叶瑞帆 刘瑜 沈杰 任佳 章小祥

电子科技2025,Vol.38Issue(7):58-65,8.
电子科技2025,Vol.38Issue(7):58-65,8.DOI:10.16180/j.cnki.issn1007-7820.2025.07.008

基于灰度梯度共生矩阵的快速布匹瑕疵检测算法

A Fast Fabric Defect Detection Algorithm Based on Gray Gradient Co-Occurrence Matrix

叶瑞帆 1刘瑜 1沈杰 1任佳 1章小祥2

作者信息

  • 1. 浙江理工大学 信息科学与工程学院,浙江 杭州 310018
  • 2. 浙江灿宇纺织有限公司,浙江 衢州 324209
  • 折叠

摘要

Abstract

In view of the problems of complex model and slow detection in fabric quality control,a fast fabric defect detection algorithm based on GGCM(Gray-Gradient Co-Occurrence Matrix)is proposed.Based on the tra-ditional GLCM(Gray Level Co-Occurrence Matrix),this algorithm adds feature extraction of image gradient infor-mation,and combines with SVM(Support Vector Machine)to detect and classify fabric images quickly and accu-rately.The eigenvalues extracted from GLCM and GGCM are analyzed and compared,and the fabric defects are de-tected by SVM classifier.Through the training classification experiment based on the fabric image data set collected from the field of a textile enterprise,the results show that the detection effect is significantly improved after adding gradient information,the accuracy rate is 94.8%,and the accuracy rate is 93.9%.The algorithm is fast for detec-tion,after extracting features,each image detection only takes 0.5 ms,which is suitable for industrial production sites.

关键词

布匹瑕疵检测/纹理/灰度梯度共生矩阵/灰度共生矩阵/特征值/自适应中值滤波/直方图均衡化/支持向量机

Key words

fabric defect detection/texture/gray gradient co-occurrence matrix/gray level co-occurrence ma-trix/characteristic value/adaptive median filtering/histogram equalization/support vector machine

分类

信息技术与安全科学

引用本文复制引用

叶瑞帆,刘瑜,沈杰,任佳,章小祥..基于灰度梯度共生矩阵的快速布匹瑕疵检测算法[J].电子科技,2025,38(7):58-65,8.

基金项目

浙江省"尖兵"研发攻关计划(2023C01062)"Jianbing"Research and Development Plan of Zhejiang(2023C01062) (2023C01062)

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文