| 注册
首页|期刊导航|电力建设|柔性负荷虚拟电厂参与削峰需求响应的自适应控制方法

柔性负荷虚拟电厂参与削峰需求响应的自适应控制方法

周吉星 王康桑 刘伟峰 吴海杰 孟超 何光宇

电力建设2025,Vol.46Issue(7):1-12,12.
电力建设2025,Vol.46Issue(7):1-12,12.DOI:10.12204/j.issn.1000-7229.2025.07.001

柔性负荷虚拟电厂参与削峰需求响应的自适应控制方法

Adaptive Control Method of Peak Shaving Demand Response Program for Flexible Load Virtual Power Plant

周吉星 1王康桑 1刘伟峰 2吴海杰 1孟超 1何光宇2

作者信息

  • 1. 南方电网数字电网集团(海南)有限公司,海口市 570203
  • 2. 电力传输与功率变换教育部重点实验室(上海交通大学),上海市 200241
  • 折叠

摘要

Abstract

[Objective]Virtual power plants(VPPs)centered on air-conditioning loads are susceptible to uncertainties,such as control delays and discrepancies between models and measurements,leading to deviations in the efficacy of demand response(DR)strategies from anticipated outcomes.A key contributor to this phenomenon is the reliance of existing DR strategies on static target load profiles,hindering their adaptability to dynamic operational environments.[Methods]To address this issue,this study introduced an adaptive control methodology for flexible-load VPPs participating in peak-shaving DR,utilizing a large-scale split-type inverter air conditioner on campuses as a case study.This approach allowed the adjustment of target load profiles for subsequent DR periods within the permissible range of the DR invitation based on the current operational environment,thereby enhancing the economic and robust nature of peak-shaving DR.In the proposed closed-loop control model,the controlled process was decoupled into a small-scale linear progress deviation model and a peak-shaving electricity correction model,each placed within the controller and feedback loop.The progress deviation model allocated planned peak shaving electricity to air conditioners,ensuring compliance with power constraints and user comfort levels.The peak-shaving electricity correction model,with the actual response to the peak-shaving DR,adaptively adjusted the target load profile for subsequent control moments to mitigate the adverse effects of uncertainties on control effectiveness.[Results]The case study focused on four types of inverter air conditioner clusters and examined the impact of different peak-shaving strategies,models,measurement errors,and control delays on the participation of the VPP in peak-shaving DR under market and invitation modes.This study verified the proposed method's economic efficiency and robustness.[Conclusions]The results show that the proposed adaptive control method for peak-shaving DR based on a dynamic target load curve can autonomously adjust the target load curve based on the actual response conditions,demonstrating superior performance in terms of control accuracy,economic benefits,and robustness.

关键词

虚拟电厂(VPP)/自适应控制/削峰需求响应/目标负荷曲线/变频空调

Key words

virtual power plant(VPP)/adaptive control/peak shaving demand response/target load curve/inverter air-conditioner

分类

信息技术与安全科学

引用本文复制引用

周吉星,王康桑,刘伟峰,吴海杰,孟超,何光宇..柔性负荷虚拟电厂参与削峰需求响应的自适应控制方法[J].电力建设,2025,46(7):1-12,12.

基金项目

国家重点研发计划项目(2021YFB1507104) This work is supported by the National Key Research and Development Program of China(No.2021YFB1507104). (2021YFB1507104)

电力建设

OA北大核心

1000-7229

访问量0
|
下载量0
段落导航相关论文