| 注册
首页|期刊导航|聊城大学学报(自然科学版)|隐私保护下多方高维数据联邦特征选择算法

隐私保护下多方高维数据联邦特征选择算法

金鑫 胡滢 李芃 郑明

聊城大学学报(自然科学版)2025,Vol.38Issue(4):497-506,10.
聊城大学学报(自然科学版)2025,Vol.38Issue(4):497-506,10.DOI:10.19728/j.issn1672-6634.2024070004

隐私保护下多方高维数据联邦特征选择算法

Federated feature selection algorithm for multi-party high-dimensional data under privacy protection

金鑫 1胡滢 2李芃 3郑明2

作者信息

  • 1. 铜陵学院 电气工程学院,安徽 铜陵,244061||安徽师范大学 计算机与信息学院,安徽 芜湖,241002
  • 2. 安徽师范大学 计算机与信息学院,安徽 芜湖,241002
  • 3. 铜陵学院 电气工程学院,安徽 铜陵,244061
  • 折叠

摘要

Abstract

High-dimensional feature selection faces challenges such as the"curse of dimensionality"and high computational costs.Due to privacy protection constraints,a large amount of high-dimensional data may be distributed and stored across different institutions(referred to as participants)and cannot be shared,further complicating the joint feature selection of multi-party high-dimensional data.In light of this,this paper proposes a surrogate-joint-assisted federated evolutionary feature selection algorithm to ad-dress the issue of high-dimensional feature selection involving multiple participants under privacy protec-tion.A framework for a surrogate-assisted federated evolutionary feature selection algorithm is designed,and based on this framework,strategies for joint construction and management of surrogate models,joint evaluation based on surrogate models,and joint updating of individuals are provided.Finally,the proposed algorithm is applied to 10 test datasets and compared with 3 typical wrapper-based evolutionary feature se-lection algorithms.The results show that the proposed algorithm not only ensures the classification per-formance of the algorithm while fully protecting the data privacy of the participants but also significantly improves the algorithm's runtime.

关键词

特征选择/进化算法/代理辅助/隐私保护

Key words

feature selection/evolutionary algorithm/surrogate-assisted/privacy protection

分类

信息技术与安全科学

引用本文复制引用

金鑫,胡滢,李芃,郑明..隐私保护下多方高维数据联邦特征选择算法[J].聊城大学学报(自然科学版),2025,38(4):497-506,10.

基金项目

国家自然科学基金项目(62306009) (62306009)

安徽省自然科学基金项目(2308085QF209)资助 (2308085QF209)

聊城大学学报(自然科学版)

1672-6634

访问量0
|
下载量0
段落导航相关论文