| 注册
首页|期刊导航|铸造技术|机器学习在球墨铸铁研发中的应用

机器学习在球墨铸铁研发中的应用

刘禹 黎振华 何远怀 涂雯雯 韦贺

铸造技术2025,Vol.46Issue(6):520-530,11.
铸造技术2025,Vol.46Issue(6):520-530,11.DOI:10.16410/j.issn1000-8365.2025.5097

机器学习在球墨铸铁研发中的应用

Application of Machine Learning in the Research and Development of Ductile Iron

刘禹 1黎振华 2何远怀 3涂雯雯 4韦贺1

作者信息

  • 1. 昆明理工大学材料科学与工程学院,云南 昆明 650093||金属先进凝固成形及装备技术国家地方工程研究中心,云南 昆明 650093
  • 2. 昆明理工大学材料科学与工程学院,云南 昆明 650093||金属先进凝固成形及装备技术国家地方工程研究中心,云南 昆明 650093||云南省轻金属增材制造工程研究中心,云南 昆明 650500
  • 3. 金属先进凝固成形及装备技术国家地方工程研究中心,云南 昆明 650093
  • 4. 云南省轻金属增材制造工程研究中心,云南 昆明 650500
  • 折叠

摘要

Abstract

Data-driven machine learning methods,by establishing complex mapping relationships between material characteristic parameters and target properties,provide a novel paradigm for ductile iron research and development,overcoming the limitations of time and cost inherent in traditional research and development(R&D)approaches.Recent progress in the application of machine learning within the ductile iron R&D process is systematically reviewed.The fundamental implementation framework is elucidated,encompassing data collection,data preprocessing,model construction and training,and model evaluation.The applications of machine learning are summarized in various areas,including microstructure and defect control,prediction of mechanical properties,and prediction of service performance.Critical challenges demanding urgent solutions in machine learning-based ductile iron R&D and applications are discussed.Finally,research directions and future development trends for machine learning-driven ductile iron development are proposed.

关键词

机器学习/球墨铸铁/性能预测/缺陷识别/服役行为预测

Key words

machine learning/ductile iron/performance prediction/defect identification/service behavior prediction

分类

矿业与冶金

引用本文复制引用

刘禹,黎振华,何远怀,涂雯雯,韦贺..机器学习在球墨铸铁研发中的应用[J].铸造技术,2025,46(6):520-530,11.

基金项目

云南省重大科技专项(202402AG050003) (202402AG050003)

铸造技术

1000-8365

访问量0
|
下载量0
段落导航相关论文