| 注册
首页|期刊导航|测井技术|基于SSA-CNN-LSTM的井下压力脉冲信号识别

基于SSA-CNN-LSTM的井下压力脉冲信号识别

姜盼琴 刘兴斌 姜志诚 李善文 何壮

测井技术2025,Vol.49Issue(3):388-400,13.
测井技术2025,Vol.49Issue(3):388-400,13.DOI:10.16489/j.issn.1004-1338.2025.03.007

基于SSA-CNN-LSTM的井下压力脉冲信号识别

Downhole Pressure Pulse Signal Recognition Based on SSA-CNN-LSTM

姜盼琴 1刘兴斌 1姜志诚 1李善文 1何壮1

作者信息

  • 1. 东北石油大学物理与电子工程学院,黑龙江 大庆 163318
  • 折叠

摘要

Abstract

Aiming at the problems of signal distortion and increased bit error rate caused by the interference of downhole sensor noise,fluid turbulent fluctuations,and wall friction effects on the wireless pressure pulse signals in the intelligent stratified water injection system,this paper designs a hybrid prediction model that integrates the sparrow search algorithm(SSA)and the convolutional long short-term memory network(CNN-LSTM).This model extracts the local spatial features of the pressure pulses such as steep rising edges and oscillating waveforms through the convolutional neural network(CNN)module,analyzes the long-term dependencies of periodic pump-valve operations in combination with the long short-term memory(LSTM)layer,and uses the SSA algorithm to adaptively optimize three hyperparameters,namely the learning rate,regularization coefficient,and the number of hidden layer nodes,so as to enhance the signal feature decoupling ability in the presence of noise.Comparative experiments are conducted using the experimental dataset of the intelligent stratified water injection project.It is found that the SSA-CNN-LSTM algorithm model outperforms traditional LSTM,CNN-LSTM,and PSO(particle swarm optimization)-CNN-LSTM models in terms of both fitting ability and prediction accuracy.Its coefficient of determination can reach as high as 99%,and the mean absolute error(MAE)and mean squared error(MSE)are as low as 0.011 483 MPa and 0.000 291 MPa2 respectively.The experimental results show that through the mechanisms of spatio-temporal feature fusion and parameter adaptive optimization,this model effectively suppresses the accuracy degradation of pressure pulse prediction caused by downhole unsteady-state interference,provides a highly robust signal processing solution for the wireless transmission scenarios of intelligent water injection systems,verifies the technical feasibility of analyzing industrial time-series data under complex working conditions,and provides theoretical support for the real-time monitoring and precise control of downhole intelligent equipment.

关键词

智能分层注水/无线压力脉冲信号/麻雀搜索算法(SSA)/卷积神经网络(CNN)/长短期记忆网络(LSTM)

Key words

intelligent stratified water injection/wireless pressure pulse signal/sparrow search algorithm(SSA)/convolutional neural network(CNN)/long short-term memory network(LSTM)

分类

天文与地球科学

引用本文复制引用

姜盼琴,刘兴斌,姜志诚,李善文,何壮..基于SSA-CNN-LSTM的井下压力脉冲信号识别[J].测井技术,2025,49(3):388-400,13.

基金项目

国家自然科学基金项目"网络模型的智能分层注水井压力脉冲数据传输方法"(52174021) (52174021)

测井技术

1004-1338

访问量0
|
下载量0
段落导航相关论文