| 注册
首页|期刊导航|测控技术|基于超声的退役锂离子电池SOH快速检测方法

基于超声的退役锂离子电池SOH快速检测方法

倪睿晨 杜宇航 张昊 胡聪 梁军 宋宇晨

测控技术2025,Vol.44Issue(7):1-10,10.
测控技术2025,Vol.44Issue(7):1-10,10.DOI:10.19708/j.ckjs.2025.07.303

基于超声的退役锂离子电池SOH快速检测方法

Rapid Detection Method of SOH for Retired Lithium-Ion Batteries Based on Ultrasonic Waves

倪睿晨 1杜宇航 2张昊 3胡聪 4梁军 1宋宇晨2

作者信息

  • 1. 哈尔滨工业大学电子与信息工程学院,黑龙江哈尔滨 150001||哈尔滨工业大学郑州研究院,河南郑州 450000
  • 2. 哈尔滨工业大学电子与信息工程学院,黑龙江哈尔滨 150001
  • 3. 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001
  • 4. 桂林电子科技大学广西自动检测技术与仪器重点实验室,广西桂林 541004
  • 折叠

摘要

Abstract

The echelon utilization of retired lithium-ion batteries has considerable economic benefits,but the long detection time limits its large-scale application.In order to solve the detection problem of the state of health(SOH)for retired batteries,an ultrasonic measurement method is introduced,and a fast estimation meth-od of the SOH for retired batteries based on"voltage-ultrasonic difference"health indicators and Informer-GRU model is proposed.By using ultrasonic waves to penetrate the batteries,the changes of electrochemical sub-stances in the batteries can be detected,and the ultrasonic characteristics strongly related to the SOH of batter-ies are collected in a short voltage window,then the"voltage-ultrasonic difference"health indicators are con-structed.Based on this,the Informer-GRU model is constructed to describe the relationship mapping between health indicators and the SOH of batteries so as to accurately estimate the SOH for retired batteries.The actual test of soft-pack lithium-ion batteries is carried out in the laboratory environment.The results show that the ac-curate estimation of the SOH for batteries with an average absolute error of 0.016%and a root mean square er-ror of 0.021%can be achieved just by ultrasonic testing in the 40 mV voltage window of 3.64~3.68 V,which can improve the efficiency of echelon utilization detection.

关键词

退役锂离子电池/健康状态估计/超声测试/数据驱动模型

Key words

retired lithium-ion battery/SOH estimation/ultrasonic testing/data driven model

分类

信息技术与安全科学

引用本文复制引用

倪睿晨,杜宇航,张昊,胡聪,梁军,宋宇晨..基于超声的退役锂离子电池SOH快速检测方法[J].测控技术,2025,44(7):1-10,10.

基金项目

广西自动检测技术与仪器重点实验室基金(YQ23206) (YQ23206)

黑龙江省自然科学基金优秀青年项目(YQ2023F006) (YQ2023F006)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文