| 注册
首页|期刊导航|测控技术|基于增量学习的转台故障诊断研究

基于增量学习的转台故障诊断研究

成喆敏 马雅琼 闫斌斌 高峰 刘梦

测控技术2025,Vol.44Issue(7):11-18,8.
测控技术2025,Vol.44Issue(7):11-18,8.DOI:10.19708/j.ckjs.2025.07.301

基于增量学习的转台故障诊断研究

Research on Turntable Fault Diagnosis Based on Incremental Learning

成喆敏 1马雅琼 2闫斌斌 1高峰 2刘梦2

作者信息

  • 1. 西北工业大学航天学院,陕西 西安 710072
  • 2. 北京长城航空测控技术研究所有限公司,北京 101111
  • 折叠

摘要

Abstract

The existing diagnostic methods for common types of faults such as overspeed,abnormal noises,reso-nance,and emergency stops during the operation of the turntable rely on engineering experience,are suscepti-ble to control signal interference,and have insufficient accuracy.To overcome these issues,a tumtable fault di-agnosis method based on incremental learning is proposed.Operational data from a three-axis vertical turntable are analyzed,focusing on the time and frequency characteristics of motor current signals selected for detection.A one-dimensional convolutional neural network(CNN)is used to extract key features from the data.An incre-mental learning strategy is used,and the herding algorithm is used to construct representative samples.A distil-lation loss is added to the original loss function to retrain the model,enabling the identification of new fault types.Fault detection experiments under various operating modes are conducted and compared with existing methods.Results show that the proposed method maintains high accuracy for historical faults and achieves over 98%recognition rate for new faults.Training time is reduced by 73.68%,effectively preventing catastrophic forgetting.The model demonstrates high accuracy and robustness,providing a reliable solution for turntable fault diagnosis.

关键词

电机电流/增量学习/故障诊断/卷积神经网络

Key words

motor current/incremental learning/fault diagnosis/CNN

分类

机械制造

引用本文复制引用

成喆敏,马雅琼,闫斌斌,高峰,刘梦..基于增量学习的转台故障诊断研究[J].测控技术,2025,44(7):11-18,8.

基金项目

航空科学基金项目(20200001053005) (20200001053005)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文