| 注册
首页|期刊导航|测控技术|基于类不平衡学习的离心泵故障诊断研究

基于类不平衡学习的离心泵故障诊断研究

陈志辉 曹思民 李耀武 赵雪岑 马剑 黄俊杰

测控技术2025,Vol.44Issue(7):26-34,9.
测控技术2025,Vol.44Issue(7):26-34,9.DOI:10.19708/j.ckjs.2025.01.207

基于类不平衡学习的离心泵故障诊断研究

Centrifugal Pump Fault Diagnosis Based on Class Imbalance Learning

陈志辉 1曹思民 1李耀武 1赵雪岑 1马剑 2黄俊杰2

作者信息

  • 1. 中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都 610000
  • 2. 北京航空航天大学,北京 100191
  • 折叠

摘要

Abstract

The"class imbalance"problem exists between the fault data and normal data collected during the operation of rotating machinery,leading to a decrease in the accuracy of the data-driven fault diagnosis model.To address this problem,the centrifugal pump is taken as an object,and the accurate fault diagnosis of the cen-trifugal pump is realized by a"two-step"approach.Firstly,the high-quality expansion of fault samples of cen-trifugal pumps is realezed based on Wasserstein generative adversarial network with gradient penalty(WGAN-GP)model.Secondly,by using the convolutional neural network(CNN)method of deep learning,the fault diag-nosis model of centrifugal pump is designed,and three sets of centrifugal pump sample sets with different bal-anced ratios and balanced sample sets are constructed to complete the accurate fault diagnosis of centrifugal pump.The experimental results show that the sample set expanded by the WGAN-GP model has a positive ben-efit for centrifugal pump fault diagnosis and can effectively improve the accuracy of centrifugal pump fault diag-nosis.

关键词

离心泵/类不平衡数据/故障诊断/生成对抗网络

Key words

centrifugal pump/class-imbalanced data/fault diagnosis/GAN

分类

信息技术与安全科学

引用本文复制引用

陈志辉,曹思民,李耀武,赵雪岑,马剑,黄俊杰..基于类不平衡学习的离心泵故障诊断研究[J].测控技术,2025,44(7):26-34,9.

基金项目

基础研究计划基金(113JCJQ2023114001) (113JCJQ2023114001)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文