| 注册
首页|期刊导航|当代职业教育|生成式人工智能促进职业教育发展:实践应用、现实挑战与优化路径

生成式人工智能促进职业教育发展:实践应用、现实挑战与优化路径

曾金

当代职业教育Issue(4):21-27,7.
当代职业教育Issue(4):21-27,7.

生成式人工智能促进职业教育发展:实践应用、现实挑战与优化路径

Artificial Intelligence Generated Content for Vocational Education Development:Applications,Challenges,and Optimization Paths

曾金1

作者信息

  • 1. 湖北工业大学,湖北 武汉 430068
  • 折叠

摘要

Abstract

Artificial Intelligence Generated Content(AIGC)has become a major driving force in promoting the digital transformation of vocational education.Through initiatives such as constructing a Q&A platform,enhancing localized deployment,advancing intelligent campus development,creating new curricula,and improving teachers'digital competencies,AIGC energizes high-quality development of vocational education.However,in the process of strengthening the integration of AIGC and vocational education,vocational colleges and universities face challenges including data privacy vulnerabilities,limited ability to generalize models and constrained personalization needs,and superficial technology-teaching integration during this convergence.To optimize AIGC for vocational education,strategies include:implementing end-to-end encryption and anonymization protocols to secure data privacy,adopting flexible model architectures and training strategies for balanced development,bridging technology with pedagogy to achieve deep integration,thereby promoting high-quality development of vocational education.

关键词

AIGC/职业教育/人工智能/智慧校园/数据隐私

Key words

artificial intelligence generated content/vocational education/artificial intelligence/intelligent campus/data privacy

分类

社会科学

引用本文复制引用

曾金..生成式人工智能促进职业教育发展:实践应用、现实挑战与优化路径[J].当代职业教育,2025,(4):21-27,7.

基金项目

2024年湖北省自然科学基金青年基金"基于多参数散射相函数的微塑料特征传感方法研究"(编号:2024AFB285) (编号:2024AFB285)

2024年湖北工业大学校本科生教育一般项目"人工智能与大学教育深度融合机制研究"(编号:2024XY21). (编号:2024XY21)

当代职业教育

1674-9154

访问量0
|
下载量0
段落导航相关论文