| 注册
首页|期刊导航|东华大学学报(英文版)|基于深度学习的时尚领型实时检测方法

基于深度学习的时尚领型实时检测方法

陈彩霞 姜琳歆

东华大学学报(英文版)2025,Vol.42Issue(3):301-314,14.
东华大学学报(英文版)2025,Vol.42Issue(3):301-314,14.DOI:10.19884/j.1672-5220.202411017

基于深度学习的时尚领型实时检测方法

A Real-Time Detection Method for Fashion Necklines Based on Deep Learning

陈彩霞 1姜琳歆2

作者信息

  • 1. 东华大学服装与艺术设计学院,上海 200051||东华大学服装设计与技术重点实验室,上海 200051
  • 2. 东华大学服装与艺术设计学院,上海 200051
  • 折叠

摘要

Abstract

Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence of complex backgrounds and varied body postures in real-world fashion images presents challenges for reliable neckline detection.To address this problem,this research builds a comprehensive fashion neckline database from online shop images and proposes an efficient fashion neckline detection model based on the YOLOv8 architecture(FN-YOLO).First,the proposed model incorporates a BiFormer attention mechanism into the backbone,enhancing its feature extraction capability.Second,a lightweight multi-level asymmetry detector head(LADH)is designed to replace the original head,effectively reducing the computational complexity and accelerating the detection speed.Last,the original loss function is replaced with Wise-IoU,which improves the localization accuracy of the detection box.The experimental results demonstrate that FN-YOLO achieves a mean average precision(mAP)of 81.7%,showing an absolute improvement of 3.9%over the original YOLOv8 model,and a detection speed of 215.6 frame/s,confirming its suitability for real-time applications in fashion neckline detection.

关键词

时尚领型检测/深度学习/检测与分类/实时性/YOLOv8

Key words

fashion neckline detection/deep learning/detection and classification/real time/YOLOv8

分类

轻工纺织

引用本文复制引用

陈彩霞,姜琳歆..基于深度学习的时尚领型实时检测方法[J].东华大学学报(英文版),2025,42(3):301-314,14.

基金项目

Fundamental Research Funds for the Central Universities,China(Nos.2232020G-08 and 2232020E-03) (Nos.2232020G-08 and 2232020E-03)

Shanghai University Knowledge Service Platform,China(No.13S107024) (No.13S107024)

东华大学学报(英文版)

1672-5220

访问量0
|
下载量0
段落导航相关论文