| 注册
首页|期刊导航|电力学报|基于气候分类和并行神经网络的短期负荷预测

基于气候分类和并行神经网络的短期负荷预测

牛天聪 武晓冬 王麟斌 席鹏辉 王正

电力学报2025,Vol.40Issue(1):50-58,9.
电力学报2025,Vol.40Issue(1):50-58,9.DOI:10.13357/j.dlxb.2025.006

基于气候分类和并行神经网络的短期负荷预测

Short-term Load Forecasting based on Climate Classification and Parallel Neural Networks

牛天聪 1武晓冬 1王麟斌 1席鹏辉 1王正2

作者信息

  • 1. 山西大学 电力与建筑学院,太原 030031
  • 2. 国网山西省电力公司 经济技术研究院,太原 030021
  • 折叠

摘要

Abstract

Accurate load forecasting is an effective measure to reduce the waste caused by difficult storage of elec-tricity.Considering the obvious seasonal characteristics of regional loads,a short-term load forecasting method based on climate classification and parallel neural network is proposed in this paper.In the climate classifica-tion,K-means is used to cluster the strongly correlated features,and then the segmentation strategy is devel-oped to determine the boundaries,which ensures the continuity of the classification in time.In parallel net-work,the feature information of input data is extracted by CNN path and the long-term dependence relationship between data is learned by LSTM path.Then,CBAM assigns different weights to the input features to im-prove the feature extraction capability of the network.Finally,taking the load forecasting of a region in Shanxi as an example,the results show that the proposed method has higher prediction accuracy under various climate classifications than CNN-LSTM,LSTM,CNN and other forecasting models.

关键词

负荷预测/气候分类/并行神经网络/空间聚类/时间分段/注意力机制

Key words

load forecasting/climate classification/parallel neural network/spatial clustering/time slicing/atten-tion mechanism

分类

信息技术与安全科学

引用本文复制引用

牛天聪,武晓冬,王麟斌,席鹏辉,王正..基于气候分类和并行神经网络的短期负荷预测[J].电力学报,2025,40(1):50-58,9.

基金项目

2023年山西省研究生教育创新计划支持项目(2023AL05). (2023AL05)

电力学报

1005-6548

访问量0
|
下载量0
段落导航相关论文