| 注册
首页|期刊导航|电讯技术|应用距离裁剪策略的改进k均值聚类量化算法

应用距离裁剪策略的改进k均值聚类量化算法

查坤 安永丽 刘英超 宋文丰

电讯技术2025,Vol.65Issue(7):1078-1086,9.
电讯技术2025,Vol.65Issue(7):1078-1086,9.DOI:10.20079/j.issn.1001-893x.250114002

应用距离裁剪策略的改进k均值聚类量化算法

Improved k-Means Clustering Quantization Algorithm with Distance Trimming Strategy

查坤 1安永丽 1刘英超 1宋文丰1

作者信息

  • 1. 华北理工大学 人工智能学院,河北 唐山 063210
  • 折叠

摘要

Abstract

A distance-based sample screening strategy is proposed to enhance key consistency during physical layer key generation.The strategy evaluates classification uncertainty by calculating the Euclidean distance difference between samples and clustering centers,then eliminates high-uncertainty samples to reduce noise interference.Simulation results show that when applied to k-Means quantization and compensated k-Means quantization,the classification inconsistency rate decreases by 8.1%and 11.7%for 5-bit quantization,and by 63.4%and 89.3%for 1-bit quantization,respectively.

关键词

物理层安全/密钥生成/信道量化:k均值聚类/距离裁剪策略

Key words

physical layer security/key generation/channel quantization/k-Means clustering/distance trimming strategy

分类

信息技术与安全科学

引用本文复制引用

查坤,安永丽,刘英超,宋文丰..应用距离裁剪策略的改进k均值聚类量化算法[J].电讯技术,2025,65(7):1078-1086,9.

基金项目

唐山市人才项目(B202302013) (B202302013)

唐山市科技项目(24130215C) (24130215C)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文