| 注册
首页|期刊导航|电子学报|基于小波域的复数卷积和复数Transformer的轻量级MR图像重建方法

基于小波域的复数卷积和复数Transformer的轻量级MR图像重建方法

张晓华 练秋生

电子学报2025,Vol.53Issue(4):1221-1231,11.
电子学报2025,Vol.53Issue(4):1221-1231,11.DOI:10.12263/DZXB.20241058

基于小波域的复数卷积和复数Transformer的轻量级MR图像重建方法

Lightweight MR Image Reconstruction Network Based on Wavelet Domain Complex Convolution and Complex Transformer

张晓华 1练秋生2

作者信息

  • 1. 燕山大学信息科学与工程学院,河北 秦皇岛 066000||河北科技师范学院数学与信息科技学院,河北 秦皇岛 066000
  • 2. 燕山大学信息科学与工程学院,河北 秦皇岛 066000||河北省信息传输与信号处理重点实验室,河北 秦皇岛 066000
  • 折叠

摘要

Abstract

Convolutional neural networks(CNNs)have demonstrated remarkable capabilities in learning image priors from large-scale datasets,achieving exceptional performance across various image processing tasks.However,the local re-ceptive field inherently limit their ability to capture long-range dependencies between pixels.In contrast,the transformer ar-chitecture,renowned for its global receptive field,has exhibited outstanding performance in natural language processing and high-level vision tasks.Nevertheless,its computational complexity,which scales quadratically with image size,poses significant challenges for high-resolution image processing applications.Furthermore,many magnetic resonance(MR)re-construction algorithms exhibit limitations by either relying exclusively on magnitude data or processing real and imaginary components as separate channels,thereby failing to account for the intrinsic correlations within complex-valued images.By integrating complex convolution and complex transformer,an innovative hybrid module is introduced,which leverages the high-resolution spatial information extracted by CNNs to enhance the details of MR images and capture long-range features through global contextual information obtained by the self-attention module.Building on this hybrid module and wavelet transform,a lightweight MR image reconstruction method using complex convolution and complex transformer in the wave-let domain is further proposed.Experimental results on the Calgary-Campinas and fastMRI datasets demonstrate that the proposed model achieves superior reconstruction performance and while maintaining lower resource consumption compared to four representative MR image reconstruction algorithms.The source code is available at https://github.com/zhangxh-qhd/WCCTNet.

关键词

MR图像重建/小波变换/轻量级网络/复数卷积/复数Transformer/感受野

Key words

MR image reconstruction/wavelet transform/lightweight network/complex convolution/complex trans-former/receptive field

分类

信息技术与安全科学

引用本文复制引用

张晓华,练秋生..基于小波域的复数卷积和复数Transformer的轻量级MR图像重建方法[J].电子学报,2025,53(4):1221-1231,11.

基金项目

河北省自然科学基金(No.F2022203030) Natural Science Foundation of Hebei Province(No.F2022203030) (No.F2022203030)

电子学报

OA北大核心

0372-2112

访问量0
|
下载量0
段落导航相关论文