| 注册
首页|期刊导航|古地理学报|碎屑岩储层智能表征与建模方法研究现状及展望

碎屑岩储层智能表征与建模方法研究现状及展望

岳大力 任柯宇 林津 张姝琪 李伟 王武荣 孙盼科 吴胜和 徐振华 刘磊 邬德刚 屈林博

古地理学报2025,Vol.27Issue(4):903-923,21.
古地理学报2025,Vol.27Issue(4):903-923,21.DOI:10.7605/gdlxb.2025.090

碎屑岩储层智能表征与建模方法研究现状及展望

Advances and perspectives in intelligent characterization and modeling of clastic reservoirs

岳大力 1任柯宇 2林津 2张姝琪 2李伟 2王武荣 2孙盼科 2吴胜和 1徐振华 2刘磊 1邬德刚 1屈林博2

作者信息

  • 1. 油气资源与工程全国重点实验室,中国石油大学(北京),北京 102249||中国石油大学(北京)地球科学学院,北京 102249||中国石油大学(北京)人工智能学院,北京 102249
  • 2. 油气资源与工程全国重点实验室,中国石油大学(北京),北京 102249||中国石油大学(北京)地球科学学院,北京 102249
  • 折叠

摘要

Abstract

Clastic rock reservoirs serve as critical carriers of hydrocarbon resources both in China and around the world.However,due to inherent limitations such as strong heterogeneity and insufficient subsurface characterization data,traditional methods of reservoir characterization and modeling have struggled to fulfill the demands for high-resolution exploration and efficient development.Since the 21th century,researchers have progressively integrated artificial intelligence(AI)techniques into the field of clastic reservoir characterization and modeling,resulting in significant advancements over the past decade.These innovations have significantly improved both the accuracy and efficiency of reservoir characterization.In this context,this paper systematically reviews the development history and current research status of intelligent technologies in clastic reservoir characterization and modeling.It highlights recent progress and application outcomes in areas such as intelligent well log interpretation for reservoir parameters,AI-based fault and stratigraphic framework analysis,intelligent reservoir prediction through well-seismic integration,and intelligent 3D geological modeling.Furthermore,we discuss the challenges faced by various intelligent approaches and outlines future directions for their development.Overall,these intelligent characterization techniques have made significant advances and demonstrated positive outcomes in practical applications.Nevertheless,they also face multiple challenges,including a lack of high-quality training samples,suboptimal generalization capabilities of learning models,and inadequate coupling of knowledge-driven with data-driven approaches.Despite these limitations,there remains significant potential for advancement,with promising application prospects emerging across reservoir characterization workflows.

关键词

碎屑岩/储层表征/三维地质建模/测井解释/井震融合/人工智能

Key words

clastic rock/reservoir characterization/3D geological modeling/well-log interpretation/well-seismic integration/artificial intelligence

分类

天文与地球科学

引用本文复制引用

岳大力,任柯宇,林津,张姝琪,李伟,王武荣,孙盼科,吴胜和,徐振华,刘磊,邬德刚,屈林博..碎屑岩储层智能表征与建模方法研究现状及展望[J].古地理学报,2025,27(4):903-923,21.

基金项目

国家自然科学基金项目(编号:42272186,42202109,42302128,42412179)资助.[Financially supported by the National Natural Science Foundation of China(Nos.42272186,42202109,42302128,42412179)] (编号:42272186,42202109,42302128,42412179)

古地理学报

OA北大核心

1671-1505

访问量0
|
下载量0
段落导航相关论文