| 注册
首页|期刊导航|国防科技大学学报|融合动力学特征的自由返回轨道双路网络学习方法

融合动力学特征的自由返回轨道双路网络学习方法

朱彬羽 李海阳 杨震 何俊华 陆林 张宇航

国防科技大学学报2025,Vol.47Issue(4):64-75,12.
国防科技大学学报2025,Vol.47Issue(4):64-75,12.DOI:10.11887/j.issn.1001-2486.25030028

融合动力学特征的自由返回轨道双路网络学习方法

Dual-path neural network learning method for free-return orbit integrating dynamic characteristics

朱彬羽 1李海阳 1杨震 1何俊华 1陆林 2张宇航3

作者信息

  • 1. 国防科技大学空天科学学院,湖南长沙 410073||太空系统运行与控制全国重点实验室,湖南长沙 410073
  • 2. 中国航天员科研训练中心,北京 100094
  • 3. 国防科技大学空天科学学院,湖南长沙 410073
  • 折叠

摘要

Abstract

The free-return orbit serves as the preferred orbital scheme for crewed spacecraft in earth-moon transfers,yet its design involves stringent constraints and significant initial-value dependency in existing algorithms.The earth-moon transfer trajectory planning for manned lunar exploration was addressed by proposing a dual-path neural network learning method to optimize free-return orbit initialization.A dynamic model of the free-return orbit was established to analyze the characteristics of the near-earth orbital solution space.Integrating the spatial partitioning characteristics of ascending and descending orbital phase in solution spaces,a dual-path neural network architecture designed via parameter-correlated transformation was proposed to ensure the completeness of orbital solutions.Utilizing ATK.Astromaster,the earth-moon free-return orbit planning under the dual-path network learning-based initialization method was implemented and validated through simulation.The results provide an effective reference for mitigating initial-value dependency in manned lunar mission orbit design.

关键词

载人探月任务/自由返回轨道/双路神经网络/ATK机动规划模块

Key words

manned lunar exploration mission/free-return orbit/dual-path neural network/ATK.Astromaster

分类

航空航天

引用本文复制引用

朱彬羽,李海阳,杨震,何俊华,陆林,张宇航..融合动力学特征的自由返回轨道双路网络学习方法[J].国防科技大学学报,2025,47(4):64-75,12.

基金项目

国家自然科学基金资助项目(12072365) (12072365)

湖南省自然科学基金资助项目(2023JJ20047) (2023JJ20047)

载人航天工程科技创新团队课题资助项目 ()

国防科技大学学报

OA北大核心

1001-2486

访问量0
|
下载量0
段落导航相关论文