| 注册
首页|期刊导航|光学精密工程|基于三维荧光光谱的水体识别及组分快速解析算法研究

基于三维荧光光谱的水体识别及组分快速解析算法研究

姜赞成 王瑞杰 顼晓亮 叶彬强 冯鹏

光学精密工程2025,Vol.33Issue(10):1627-1637,11.
光学精密工程2025,Vol.33Issue(10):1627-1637,11.DOI:10.37188/OPE.20253310.1627

基于三维荧光光谱的水体识别及组分快速解析算法研究

Research on water identification and rapid analysis algorithm for components based on 3d fluorescence spectroscopy

姜赞成 1王瑞杰 2顼晓亮 2叶彬强 3冯鹏2

作者信息

  • 1. 重庆大学 光电技术及系统教育部重点实验室,重庆 400044||四川碧朗科技有限公司,四川 绵阳 621900
  • 2. 重庆大学 光电技术及系统教育部重点实验室,重庆 400044
  • 3. 重庆理工大学 两江人工智能学院,重庆 400054||重庆大学 微电子与通信工程学院,重庆 400044
  • 折叠

摘要

Abstract

With the increasing severity of water environmental pollution,there is an urgent need for rapid and accurate detection and identification of organic pollutants in water.Three-dimensional fluorescence spectroscopy technology,which provides rich spectral information about pollutants,has become a hot top-ic in the research of pollutant identification and source tracing in water bodies.The current methods mainly focus on deep learning based spectral data analysis,which requires a large amount of spectral data and is difficult to promote on site.This paper utilized three-dimensional Excitation-Emission Matrix(3D-EEM)data and proposed a method for multi-classification identification and precise component fitting of water bodies based on a combination of two-dimensional Gabor wavelets and Support Vector Machine(SVM).This method effectively extracted texture features and peak positions of three-dimensional fluorescence spectra,which improved the efficiency of water sample component analysis.Here blank subtraction and Delaunay triangle interpolation were used to reduce background noise and scattering interference in spectral data,and spectral fluctuation interference was suppressed by extending the Savitzky-Golay smoothing ap-proach.Subsequently,texture feature information of 3D-EEM data and global information of three-dimen-sional fluorescence peaks were extracted using two-dimensional Gabor wavelets and fluorescence peak ex-traction methods.Finally,an EEM_MSVM model based on MSVC and CF_MSVR was constructed to achieve high-accuracy classification identification and component prediction of water pollutants.Experi-mental results show that the classification accuracy for water body types is 97.6%.In terms of component prediction,the Root Mean Square Error(RMSE)loss is only 5.3,with a correlation coefficient of 0.94.This effectively achieves accurate classification of typical water bodies and analysis of their components.

关键词

三维荧光光谱/荧光组分图谱/水体识别/溯源追踪

Key words

three-dimensional fluorescence spectroscopy/fluorescence component spectra/water body identification/source tracing

分类

资源环境

引用本文复制引用

姜赞成,王瑞杰,顼晓亮,叶彬强,冯鹏..基于三维荧光光谱的水体识别及组分快速解析算法研究[J].光学精密工程,2025,33(10):1627-1637,11.

基金项目

重庆市科委技术创新与应用发展专项(No.cstc2021jscx-gksbX0056) (No.cstc2021jscx-gksbX0056)

重庆市九龙坡区基础研究与成果转化类科技计划项目(No.2022-02-003-Z) (No.2022-02-003-Z)

重庆市中小学创新人才培养工程项目(No.CY230903&CY230104) (No.CY230903&CY230104)

光学精密工程

OA北大核心

1004-924X

访问量0
|
下载量0
段落导航相关论文