| 注册
首页|期刊导航|高压物理学报|基于神经网络的硬化水泥浆体等效强度预测

基于神经网络的硬化水泥浆体等效强度预测

宋敏 杨予舒 祝华杰 王志勇

高压物理学报2025,Vol.39Issue(8):78-88,11.
高压物理学报2025,Vol.39Issue(8):78-88,11.DOI:10.11858/gywlxb.20251024

基于神经网络的硬化水泥浆体等效强度预测

Prediction of Equivalent Strength of Hydrated Cement Paste Based on Neural Networks

宋敏 1杨予舒 2祝华杰 3王志勇2

作者信息

  • 1. 山西省交通科技研发有限公司桥梁与隧道工程研究院,山西 太原 030000||太原理工大学航空航天学院,山西 太原 030024
  • 2. 太原理工大学航空航天学院,山西 太原 030024||太原理工大学应用力学研究所,山西 太原 030024
  • 3. 山西省交通科技研发有限公司桥梁与隧道工程研究院,山西 太原 030000
  • 折叠

摘要

Abstract

To optimize material performance and ensure the safety of engineering structures,it is essential to investigate the mechanical properties of cement hydration models with complex structures.This study aims to investigate the influence of the water-to-cement ratio and phase volume fractions on the equivalent mechanical properties of cement paste,particularly focusing on how these parameters influence the behavior of the material.A data-driven model is proposed to predict the mechanical performance of hydrated cement structures.Three-dimensional structural slices of Portland hydrated cement paste were created by utilizing the HYMOSTRUC 3D software.Subsequently,an automated batch-processing script coded in Python was applied to transform these slices into ABAQUS models.Tensile simulations were performed to determine the equivalent elastic modulus and equivalent strength of the structures.Based on the simulation results,a backpropagation prediction model was developed using a data-driven approach.Hyperparameter optimization of the model was performed using K-fold cross-validation to improve its generalization capability.Consequently,the trained neural network model demonstrates high accuracy in predicting the mechanical properties of hydrated cement structures.This approach not only ensures reliable predictions but also significantly reduces the complexity associated with traditional microscale material analysis methods.Overall,this study offers an efficient and robust solution for performance prediction of cement-based materials.

关键词

硬化水泥浆体/有限元方法/神经网络/数据驱动方法/单轴拉伸

Key words

hydrated cement paste/finite element method/neural network/data-driven approach/uniaxial tension

分类

数理科学

引用本文复制引用

宋敏,杨予舒,祝华杰,王志勇..基于神经网络的硬化水泥浆体等效强度预测[J].高压物理学报,2025,39(8):78-88,11.

基金项目

国家自然科学基金(12272257) (12272257)

山西省基础研究计划青年项目(202303021222387,202403021222519) (202303021222387,202403021222519)

高压物理学报

OA北大核心

1000-5773

访问量0
|
下载量0
段落导航相关论文