| 注册
首页|期刊导航|高压物理学报|基于ISCSO-KELM模型的岩爆等级预测

基于ISCSO-KELM模型的岩爆等级预测

雷学良 周宗红 刘剑 封占锁 景明强

高压物理学报2025,Vol.39Issue(8):128-139,12.
高压物理学报2025,Vol.39Issue(8):128-139,12.DOI:10.11858/gywlxb.20240913

基于ISCSO-KELM模型的岩爆等级预测

Prediction of Rock Burst Intensity Based on the ISCSO-KELM Model

雷学良 1周宗红 1刘剑 1封占锁 2景明强2

作者信息

  • 1. 昆明理工大学国土资源与工程学院,云南 昆明 650093
  • 2. 云南云天化聚磷新材料有限公司,云南 昭通 657000
  • 折叠

摘要

Abstract

In order to reduce the occurrence of rock burst accidents during construction,the rock burst intensity should be assessed.In this paper,we propose a new rock burst prediction model based on the improved sandcat swam optimization-kernel based extreme learning machhine(ISCSO-KELM)algorithm.The maximum tangential stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as the evaluation indexes of rock burst.105 domestic and international examples of rock burst were selected as samples for machine learning.Comparison of the relative ratios of the model presented herein with confusion matrix predicted by models including random forest(RF),K-nearest neighbor(KNN),support vector machine(SVM)and kernel based extreme learning machhine(KELM)models shows that,the ISCSO-KELM model is superior at assessing both evaluation accuracy and recall.The evaluation accuracy of the model reached 96.774 2%,indicating the superiority of ISCSO-KELM.Relevant engineering cases were used to verify the rock burst intensity.The results show that ISCSO-KELM model is more effective in capturing the connection between rock burst intensity and the indexes,thus providing a new highly applicable method for rock burst prediction.

关键词

核极限学习机/沙猫群优化算法/混淆矩阵/岩爆预测

Key words

nuclear limit learning machine/sand cat group optimization algorithm/confusion matrix/rock burst prediction

分类

数理科学

引用本文复制引用

雷学良,周宗红,刘剑,封占锁,景明强..基于ISCSO-KELM模型的岩爆等级预测[J].高压物理学报,2025,39(8):128-139,12.

基金项目

国家自然科学基金(52264019) (52264019)

高压物理学报

OA北大核心

1000-5773

访问量0
|
下载量0
段落导航相关论文