| 注册
首页|期刊导航|华南理工大学学报(自然科学版)|山区高速公路货车事故影响因素分析

山区高速公路货车事故影响因素分析

温惠英 马肇良 赵胜 巫立明 黄坤火

华南理工大学学报(自然科学版)2025,Vol.53Issue(7):93-103,11.
华南理工大学学报(自然科学版)2025,Vol.53Issue(7):93-103,11.DOI:10.12141/j.issn.1000-565X.240263

山区高速公路货车事故影响因素分析

Analysis of Factors Affecting Truck Accidents on Mountainous Freeways

温惠英 1马肇良 1赵胜 1巫立明 2黄坤火1

作者信息

  • 1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 2. 广东联合电子服务股份有限公司,广东 广州 510075
  • 折叠

摘要

Abstract

Mountainous freeways pose a higher risk for truck accidents due to their complex terrain,variable weather conditions,and constrained road infrastructure.To investigate the factors influencing the severity of truck accidents on mountainous highways and provide a scientific basis for proactive accident prevention and precise traffic safety management,this study employs machine learning methods to construct and analyze classification models for predicting accident severity.A total of 34 features,including collision type,vehicle type,pavement structure,horizontal alignment,vertical alignment,roadside protection measures,road surface conditions,season,and accident time,were selected as input variables.Accident severity,categorized into minor injury and severe injury,was used as the binary output variable.Three machine learning models were developed:Decision Tree(DT),Random Forest(RF),and Support Vector Machine(SVM).To evaluate the classification performance of these models,accuracy,precision,recall,and F1-score were used as assessment metrics.Furthermore,to gain deeper insights into the decision-making mechanisms of each model and identify key influencing factors,the study applied the SHapley Additive exPlanations(SHAP)method to interpret the model predictions and quantify the contribution of each input variable to accident severity.The results indicate that the RF model outperforms the DT and SVM models,demonstrating superior performance in terms of accuracy,precision,recall,and F1-score.SHAP analysis further identifies critical factors influencing the severity of truck accidents on mountainous highways,including rollover,absence of gradient,cement pavement,curves,frontal collisions,accident time(19:00-06:59),and lack of roadside protective measures.

关键词

交通安全/山区高速公路/事故严重程度/货车事故/机器学习

Key words

traffic safety/mountainous freeways/accident severity/truck accidents/machine learning

分类

交通工程

引用本文复制引用

温惠英,马肇良,赵胜,巫立明,黄坤火..山区高速公路货车事故影响因素分析[J].华南理工大学学报(自然科学版),2025,53(7):93-103,11.

基金项目

国家自然科学基金项目(52372329)Supported by the National Natural Science Foundation of China(52372329) (52372329)

华南理工大学学报(自然科学版)

OA北大核心

1000-565X

访问量1
|
下载量0
段落导航相关论文