| 注册
首页|期刊导航|电力系统保护与控制|PPO算法优化参数的微网接口变换器自抗扰控制

PPO算法优化参数的微网接口变换器自抗扰控制

周雪松 刘文进 马幼捷 陶珑 问虎龙 丰美丽

电力系统保护与控制2025,Vol.53Issue(14):90-99,10.
电力系统保护与控制2025,Vol.53Issue(14):90-99,10.DOI:10.19783/j.cnki.pspc.241396

PPO算法优化参数的微网接口变换器自抗扰控制

Active disturbance rejection control of microgrid interface converters using PPO algorithm for parameters optimization

周雪松 1刘文进 1马幼捷 1陶珑 1问虎龙 2丰美丽3

作者信息

  • 1. 天津市新能源电力变换传输与智能控制重点实验室(天津理工大学),天津 300384
  • 2. 天津瑞能电气有限公司,天津 300385||天津瑞源电气有限公司,天津 300308
  • 3. 天津安捷物联科技股份有限公司,天津 300392
  • 折叠

摘要

Abstract

As an important component of modern power systems,DC microgrids are susceptible to disturbances at the load-side interface converters due to the randomness and uncertainty of renewable energy sources,resulting in poor output characteristics.In order to effectively mitigate the adverse effects of uncertainty on system performance when the controller parameters are kept constant,this paper proposes an active disturbance rejection control method based on the proximal policy optimization(PPO)algorithm.In this method,a PPO agent interacts with the traditional active disturbance rejection control system environment to perceive changes in system states and optimizes the control strategy based on feedback from a reward.During the training process,the agent explores various control actions to adaptively tune observer parameters,thereby ensuring the stability of the converter output voltage.Finally,the proposed PPO-LADRC is compared through digital simulations with the traditional linear active disturbance rejection control(LADRC)and double-closed-loop proportional-integral control methods.The results verify that the proposed control strategy can significantly improve the dynamic performance of the system under various disturbances.

关键词

直流微电网/接口变换器/深度强化学习/自抗扰控制/自适应调整

Key words

DC microgrid/interface converter/deep reinforcement learning/active disturbance rejection control/adaptive tuning

引用本文复制引用

周雪松,刘文进,马幼捷,陶珑,问虎龙,丰美丽..PPO算法优化参数的微网接口变换器自抗扰控制[J].电力系统保护与控制,2025,53(14):90-99,10.

基金项目

This work is supported by the Key Program of National Natural Science Foundation of China(No.U23B20142). 国家自然科学基金重点项目资助(U23B20142) (No.U23B20142)

电力系统保护与控制

OA北大核心

1674-3415

访问量0
|
下载量0
段落导航相关论文