吉林大学学报(理学版)2025,Vol.63Issue(4):973-978,6.DOI:10.13413/j.cnki.jdxblxb.2024447
Kirchhoff型双调和方程边值问题径向正解的存在性
Existence of Radial Positive Solutions for Boundary Value Problems of Kirchhoff Type Biharmonic Equation
摘要
Abstract
By using the fixed point theorem,the author study the existence of radial positive solutions for the boundary value problem of the Kirchhoff type biharmonic equation{Δ2u-M(∫A|▽u|2dx)Δu=f(|x|,u,|▽u|),x∈A,u(x)=Δu(x)=0,x∈∂A,where A={x∈Rn,0<r≤|x|≤R},n≥2,R-r<2,f∈C([r,R]×[0,∞)×R)and M∈C[0,∞)are nonnegative functions.When the nonlinear term f satisfies appropriate conditions,the author proves that there is at least one radial positive solution to the problem.关键词
Kirchhoff型方程/正解/不动点定理/双调和方程Key words
Kirchhoff type equation/positive solution/fixed point theorem/biharmonic equation分类
数理科学引用本文复制引用
谭明秋..Kirchhoff型双调和方程边值问题径向正解的存在性[J].吉林大学学报(理学版),2025,63(4):973-978,6.基金项目
国家自然科学基金(批准号:12061064 ()
12361040). ()