吉林大学学报(理学版)2025,Vol.63Issue(4):1025-1031,7.DOI:10.13413/j.cnki.jdxblxb.2024457
环形区域上非线性项中含梯度项的Kirchhoff方程的径向对称解
Radial Symmetric Solutions of Kirchhoff Equation of Nonlinearity with Gradient Term on Annulus
摘要
Abstract
We discussed the existence of radial symmetric solutions of a Kirchhoff equation of nonlinearity with gradient term on an annulus in RN(N≥2)by using the Leray-Schauder fixed point theorem.Under the nonlinearity satisfied certain conditions which allowed the nonlinearity might be superlinear growth of any order on unknown function term,and quadratic growth on the gradient term of unknown function,the existence results of radial symmetric solutions were obtained.关键词
Kirchhoff型椭圆方程/径向对称解/存在性/Leray-Schauder不动点定理Key words
Kirchhoff type elliptic equation/radial symmetric solution/existence/Leray-Schauder fixed point theorem分类
数理科学引用本文复制引用
陈文婧,李永祥..环形区域上非线性项中含梯度项的Kirchhoff方程的径向对称解[J].吉林大学学报(理学版),2025,63(4):1025-1031,7.基金项目
国家自然科学基金(批准号:12061062). (批准号:12061062)