| 注册
首页|期刊导航|计算机工程与科学|基于多视图图注意力机制的软件定义光传输网络路由优化算法

基于多视图图注意力机制的软件定义光传输网络路由优化算法

陈俊彦 李欣梅 朱昌洪 肖微

计算机工程与科学2025,Vol.47Issue(7):1193-1204,12.
计算机工程与科学2025,Vol.47Issue(7):1193-1204,12.DOI:10.3969/j.issn.1007-130X.2025.07.006

基于多视图图注意力机制的软件定义光传输网络路由优化算法

A routing optimization algorithm for software-defined optical transport network based on multi-view graph attention mechanism

陈俊彦 1李欣梅 1朱昌洪 2肖微3

作者信息

  • 1. 桂林电子科技大学计算机与信息安全学院/软件学院/密码学院,广西桂林 541004
  • 2. 桂林航天工业学院计算机科学与工程学院,广西桂林 541004
  • 3. 国防科技大学计算机学院,湖南长沙 410073
  • 折叠

摘要

Abstract

To address issues such as poor convergence performance and weak generalization capability in traditional deep reinforcement learning(DRL)applications for routing optimization in software de-fined optical networks(SDONs),this paper proposes a multi-view graph attention mechanism-based deep Q-Network(MGATDQN)algorithm to optimize routing decisions in SDONs.First,a DRL-based routing decision model is designed to identify the optimal routing strategy for each source-destination traffic demand in the optical network.Second,considering the sparse connectivity characteristics of nodes in optical networks,a multi-view attention network is employed as the network model for the deep Q-Network(DQN).By computing attention weights for neighboring edges,the reinforcement learning a-gent can consciously aggregate critical network information,thereby enhancing the model's generaliza-tion capability.Additionally,the integration of multi-view learning improves the convergence speed and stability of the graph attention network model.Finally,simulation-based routing experiments are conduc-ted using the Gym framework,and the algorithm's load-balancing capability and generalization perform-ance are evaluated across different network topologies.Experimental results demonstrate that the MGATDQN algorithm exhibits superior convergence performance and load-balancing ability in SDON routing optimization.Moreover,it generalizes well to unseen network structures and maintains robust decision-making capabilities even when certain network nodes fail.

关键词

光传输网络/软件定义网络/深度强化学习/多视图图注意力机制

Key words

optical transport network/software-defined networking/deep reinforcement learning/multi-view graph attention mechanism

分类

信息技术与安全科学

引用本文复制引用

陈俊彦,李欣梅,朱昌洪,肖微..基于多视图图注意力机制的软件定义光传输网络路由优化算法[J].计算机工程与科学,2025,47(7):1193-1204,12.

基金项目

广西区自然科学基金(2020GXNSFDA238001) (2020GXNSFDA238001)

广西高校中青年教师科研基础能力提升项目(2020KY05033) (2020KY05033)

计算机工程与科学

OA北大核心

1007-130X

访问量0
|
下载量0
段落导航相关论文