| 注册
首页|期刊导航|计算机工程与应用|持续关系抽取方法研究综述

持续关系抽取方法研究综述

杭婷婷 郭亚 李德胜 冯钧

计算机工程与应用2025,Vol.61Issue(14):1-19,19.
计算机工程与应用2025,Vol.61Issue(14):1-19,19.DOI:10.3778/j.issn.1002-8331.2412-0102

持续关系抽取方法研究综述

Survey on Research of Continual Relation Extraction Methods

杭婷婷 1郭亚 2李德胜 2冯钧3

作者信息

  • 1. 安徽工业大学 计算机科学与技术学院,安徽 马鞍山 243032||河海大学 水利部水利大数据重点实验室,南京 211100
  • 2. 安徽工业大学 计算机科学与技术学院,安徽 马鞍山 243032
  • 3. 河海大学 水利部水利大数据重点实验室,南京 211100||河海大学 计算机与软件学院,南京 211100
  • 折叠

摘要

Abstract

Relation extraction(RE)focuses on identifying and extracting relations between entities from textual data.With the dynamic nature of data streams,traditional relation extraction models face challenges with flexibility and effec-tiveness when new relation types emerge.Continual relation extraction(CRE)models,through real-time learning,not only adapt to new relation types but also effectively retain previously learned knowledge,providing crucial support for the dynamic updating and expansion of knowledge graphs.This paper provides a systematic review of the research progress in the field of continual relation extraction.Firstly,it elaborates the development history,basic concepts,and task defini-tions of continual relation extraction.Next,it summarizes the current research methods from four perspectives:relation prototype,adversarial augmentation,contrastive learning,and other approaches.Subsequently,commonly used datasets and evaluation metrics are introduced,followed by a comparative performance evaluation of mainstream models.Finally,the limitations and challenges of existing methods are discussed,and future research directions are proposed.

关键词

持续关系抽取/记忆机制/关系原型/对抗增强/对比学习

Key words

continual relation extraction/memory mechanism/relation prototypes/adversarial augmentation/contrastive learning

分类

信息技术与安全科学

引用本文复制引用

杭婷婷,郭亚,李德胜,冯钧..持续关系抽取方法研究综述[J].计算机工程与应用,2025,61(14):1-19,19.

基金项目

国家自然科学基金(62306007) (62306007)

国家重点研发计划(2023YFC3209203) (2023YFC3209203)

安徽工业大学科研基金(QZ202209). (QZ202209)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文