| 注册
首页|期刊导航|计算机工程与应用|深度学习中结合哈密顿力学的神经网络研究进展

深度学习中结合哈密顿力学的神经网络研究进展

梁永琦 白双成 张志一

计算机工程与应用2025,Vol.61Issue(14):20-36,17.
计算机工程与应用2025,Vol.61Issue(14):20-36,17.DOI:10.3778/j.issn.1002-8331.2409-0436

深度学习中结合哈密顿力学的神经网络研究进展

Advances in Neural Networks Combined with Hamiltonian Mechanics in Deep Learning

梁永琦 1白双成 1张志一1

作者信息

  • 1. 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
  • 折叠

摘要

Abstract

Neural networks based on Hamiltonian mechanics have become an important research direction in the field of natural language processing,which can not only solve the problem of gradient disappearance in deep learning,but also provide a new way for researchers to explore the interpretibility of neural networks and solve the current difficult prob-lems in deep learning.It utilizes the principles of classical mechanics,updates the network state through the Hamiltonian function,and uses the energy conservation property to effectively improve the accuracy of the model,and also makes an important contribution to solving the gradient problem in deep learning.Firstly,the main motivation and theoretical basis of deep learning guided by Hamiltonian mechanics are briefly introduced.Secondly,the neural network based on Hamilto-nian mechanics is discussed in detail,and its characteristics,application scenarios and limitations are summarized.Finally,the problems and challenges of the combination of Hamiltonian mechanics and neural networks in the field of natural language processing are discussed,and the future development is prospected to provide a reference for further research.

关键词

哈密顿力学/梯度消失/神经网络/自然语言处理

Key words

Hamiltonian dynamics/gradient vanishing/neural networks/natural language processing

分类

信息技术与安全科学

引用本文复制引用

梁永琦,白双成,张志一..深度学习中结合哈密顿力学的神经网络研究进展[J].计算机工程与应用,2025,61(14):20-36,17.

基金项目

国家社科基金(20XYY027) (20XYY027)

内蒙古自治区自然科学基金重点项目(2023ZD10,2022ZD05) (2023ZD10,2022ZD05)

内蒙古自治区高等学校创新团队发展计划支持项目(NMGIRT2414). (NMGIRT2414)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文