| 注册
首页|期刊导航|计算机与数字工程|基于社交信息与知识图注意力网络的推荐算法

基于社交信息与知识图注意力网络的推荐算法

徐长林 王逊 黄树成

计算机与数字工程2025,Vol.53Issue(5):1215-1221,7.
计算机与数字工程2025,Vol.53Issue(5):1215-1221,7.DOI:10.3969/j.issn.1672-9722.2025.05.001

基于社交信息与知识图注意力网络的推荐算法

Recommendation Algorithm Based on Social Information and Knowledge Graph Attention Network

徐长林 1王逊 1黄树成1

作者信息

  • 1. 江苏科技大学计算机学院 镇江 212100
  • 折叠

摘要

Abstract

In order to solve the problem that the recommendation algorithm based on knowledge graph ignores the correlation between users when using semantic information,resulting in the lack of neighborhood user information in the user's feature expres-sion,a recommendation algorithm(SKGAN)based on social information and knowledge graph attention network is proposed.Through knowledge embedding,the low-dimensional representation of the entity is obtained in the algorithm.The user features are obtained by performing convolution of the user-item bipartite graph,propagated and aggregated through social networks.An atten-tion mechanism is used to calculate the weights in the process of propagation.The enhanced user expression is combined with proj-ect representation of convolutional output of the item knowledge graph,so as to achieve recommendations.The experimental results show that the SKGAN algorithm outperforms the baseline model in both AUC and F1-Score metrics.

关键词

推荐系统/社交网络/知识图谱/图卷积网络/注意力机制

Key words

recommender system/social network/knowledge graph/graph convolutional network/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

徐长林,王逊,黄树成..基于社交信息与知识图注意力网络的推荐算法[J].计算机与数字工程,2025,53(5):1215-1221,7.

基金项目

国家自然科学基金项目(编号:61772244)资助. (编号:61772244)

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文