首页|期刊导航|计算机与数字工程|基于门控机制时空图卷积模型的交通预测

基于门控机制时空图卷积模型的交通预测OA

Traffic Prediction Based on Spatio-temporal Graph Convolution Model of Gating Mechanism

中文摘要英文摘要

传统的交通预测方法忽略了交通数据的时空依赖性而表现出较差的性能;现有的交通预测模型大都基于GNN和RNN,虽然这些模型在很大程度上提高了预测性能,但是仍有局限性,例如RNN在处理长时序列时会造成梯度爆炸问题.论文提出了一种基于门控机制的时空图卷积网络(GSTGCN)来进行交通预测.GSTGCN的核心是时空卷积模块,其主要包含三个部分:标准门控时间卷积层,图卷积层和门控扩散因果时间卷积层.除此之外,论文还引入了掩码矩阵来构造交通图的邻接矩阵并且在门控扩散因果卷积层加入跳步连接和残差连接.最后在PeMSD7(M)和METR-LA两个数据集上进行实验,实验的结果表明GSTGCN模型的预测性能在中长期和长期预测上优于先进的基线.

The traditional traffic prediction method ignores the spatio-temporal dependence of traffic data and shows poor per-formance.The majority of the existing traffic prediction models are based on GNN and RNN.Although these models improve the pre-diction performance to a large extent,they still have some limitations,such as the gradient explosion problem caused by RNN when dealing with long time sequences.In this paper,a gating mechanism is proposed based on spatio-temporal graph convolution net-work(GSTGCN)for traffic prediction.The core of GSTGCN is the spatio-temporal convolution module(ST-Conv module),which mainly consists of three parts,which are standard gated temporal convolution layer,spatial graph convolution layer and gated diffu-sion causal temporal convolution layer.In addition,this paper also introduces the mask matrix to construct the adjacency matrix of the traffic graph and skip connection and residual connection are added to gated diffusion causal temporal convolutional layer.Final-ly,experiments are carried out on PeMSD7(M)and METR-LA datasets,and the experimental results show that the prediction per-formance of GSTGCN model is better than that of advanced baselines in medium-term and long-term prediction.

张锦;王卉;邝利丹;刘园园;李强;孙程

湖南师范大学 长沙 410081||长沙理工大学 长沙 410114湖南师范大学 长沙 410081长沙理工大学 长沙 410114湖南师范大学 长沙 410081湖南师范大学 长沙 410081湖南师范大学 长沙 410081

数理科学

邻接矩阵门控机制门控扩散因果时间卷积跳步连接残差连接

mask matrixgating mechanismgated diffusion causal temporal convolutionskip connectionresidual connec-tion

《计算机与数字工程》 2025 (5)

1242-1250,9

10.3969/j.issn.1672-9722.2025.05.006

评论