| 注册
首页|期刊导航|计算机应用与软件|深度特征选择方法研究综述

深度特征选择方法研究综述

陈挺 刘香君 臧璇 池明旻

计算机应用与软件2025,Vol.42Issue(7):1-11,32,12.
计算机应用与软件2025,Vol.42Issue(7):1-11,32,12.DOI:10.3969/j.issn.1000-386x.2025.07.001

深度特征选择方法研究综述

REVIEW RESEARCH ON DEEP FEATURE SELECTION METHODS

陈挺 1刘香君 1臧璇 1池明旻2

作者信息

  • 1. 复旦大学计算机科学技术学院上海市数据科学重点实验室 上海 200438
  • 2. 复旦大学计算机科学技术学院上海市数据科学重点实验室 上海 200438||中山小池科技有限公司中山复旦联合创新中心 广东 中山 528400
  • 折叠

摘要

Abstract

Feature selection can eliminate noise and redundant information in data,simplify computational complexity and data analysis difficulty,so it has significant research value in data mining and machine learning.With the development of deep learning technology,deep neural networks have been applied to feature selection and achieved better results than traditional methods.Still,there is a lack of comprehensive description and discussion of such research.In this paper,we described the traditional feature selection algorithms,and summarized the research progress of deep feature selection algorithms into two categories:input-layer embedding and encoding-layer embedding.The effects of typical algorithms were tested on public datasets,and challenging and research directions were further discussed.

关键词

特征选择/数据挖掘/深度学习/深度特征选择

Key words

Feature selection/Data mining/Deep learning/Deep feature selection

分类

信息技术与安全科学

引用本文复制引用

陈挺,刘香君,臧璇,池明旻..深度特征选择方法研究综述[J].计算机应用与软件,2025,42(7):1-11,32,12.

基金项目

国家自然科学基金项目(62171139). (62171139)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文