| 注册
首页|期刊导航|江苏大学学报(自然科学版)|基于改进YOLOv5的水下鱼蟹检测算法

基于改进YOLOv5的水下鱼蟹检测算法

顾寅武 王玉周 张舜尧 马海亮 马一鸣 宋雪桦

江苏大学学报(自然科学版)2025,Vol.46Issue(4):402-408,7.
江苏大学学报(自然科学版)2025,Vol.46Issue(4):402-408,7.DOI:10.3969/j.issn.1671-7775.2025.04.005

基于改进YOLOv5的水下鱼蟹检测算法

Underwater fish and crab detection algorithm based on improved YOLOv5

顾寅武 1王玉周 2张舜尧 1马海亮 1马一鸣 1宋雪桦1

作者信息

  • 1. 江苏大学计算机科学与通信工程学院,江苏镇江 212013
  • 2. 江苏捷诚车载电子信息工程有限公司,江苏镇江 212000
  • 折叠

摘要

Abstract

To solve the problem of the existing underwater detection with low detection accuracy due to single variety and dense target,the improved YOLOv5 algorithm of RSC-YOLOv5 was proposed.The RepVGG Block module was used on Backbone to improve the recognition accuracy of targets of different scales and enhance the inference speed.The shuffle attention(SA)module was added to improve the feature extraction ability of the algorithm.Content-aware reassembly of features(CARAFE)upsampling was used in Neck to obtain larger receptive field.Varifocal Loss was introduced to pay more attention to the high-quality positive samples in intensive target sample training.The experimental results show that the average accuracy of the RSC-YOLOv5 fish and crab detection algorithm is 93.6%,which verifies that the proposed algorithm is suitable for the underwater fish and crab detection.

关键词

鱼蟹检测/识别精度/特征提取/YOLOv5/RepVGG Block

Key words

fish and crab detection/recognition accuracy/feature extraction/YOLOv5/RepVGG Block

分类

信息技术与安全科学

引用本文复制引用

顾寅武,王玉周,张舜尧,马海亮,马一鸣,宋雪桦..基于改进YOLOv5的水下鱼蟹检测算法[J].江苏大学学报(自然科学版),2025,46(4):402-408,7.

基金项目

国家自然科学基金资助项目(62072217) (62072217)

江苏大学学报(自然科学版)

OA北大核心

1671-7775

访问量0
|
下载量0
段落导航相关论文