| 注册
首页|期刊导航|现代制造工程|面向多目标动态作业车间调度的强化学习决策算法研究

面向多目标动态作业车间调度的强化学习决策算法研究

张宁宁 万卫兵 张梦晓 赵宇明

现代制造工程Issue(7):20-30,19,12.
现代制造工程Issue(7):20-30,19,12.DOI:10.16731/j.cnki.1671-3133.2025.07.003

面向多目标动态作业车间调度的强化学习决策算法研究

Research on reinforcement learning decision algorithm for multi-objective dynamic job shop scheduling

张宁宁 1万卫兵 1张梦晓 1赵宇明2

作者信息

  • 1. 上海工程技术大学电子电气工程学院,上海 201620
  • 2. 上海交通大学自动化系,上海 201100
  • 折叠

摘要

Abstract

To address the multi-objective dynamic job shop scheduling problem and meet the real-time scheduling needs of manu-facturing workshops in environments with variable scales,a method combining Proximal Policy Optimization(PPO)with GoogLeNet,named GLN-PPO,is proposed.This method constructs the state space of the scheduling problem using multidimen-sional matrices,designs an action space based on various priority rules,and devises a multi-objective reward function.To verify the effectiveness of the proposed algorithm,it is trained and tested in three environments:a static public environment based on common benchmark problems,a static real environment based on actual cases,and a dynamic real environment.Experimental re-sults show that compared to genetic algorithms,GLN-PPO can provide high-quality scheduling results,meet the real-time sched-uling requirements of enterprises,and adapt flexibly to environments with variable scales.

关键词

深度强化学习/作业车间调度/GoogLeNet/近端策略优化

Key words

deep reinforcement learning/job shop scheduling/GoogLeNet/Proximal Policy Optimization(PPO)

分类

信息技术与安全科学

引用本文复制引用

张宁宁,万卫兵,张梦晓,赵宇明..面向多目标动态作业车间调度的强化学习决策算法研究[J].现代制造工程,2025,(7):20-30,19,12.

基金项目

科技部科技创新2030——"新一代人工智能"重大项目(2020AAA0109300) (2020AAA0109300)

现代制造工程

OA北大核心

1671-3133

访问量0
|
下载量0
段落导航相关论文