| 注册
首页|期刊导航|空间科学学报|基于LSTM神经网络的Dst指数预报方法

基于LSTM神经网络的Dst指数预报方法

李绍文 牛俊 梅冰 姚俐竹 李炎斌

空间科学学报2025,Vol.45Issue(3):641-652,12.
空间科学学报2025,Vol.45Issue(3):641-652,12.DOI:10.11728/cjss2025.03.2024-0045

基于LSTM神经网络的Dst指数预报方法

Dst Index Prediction Method Based on LSTM Neural Network

李绍文 1牛俊 1梅冰 1姚俐竹 1李炎斌1

作者信息

  • 1. 国防科技大学气象海洋学院 长沙 410073
  • 折叠

摘要

Abstract

The Dst index is one of the widely used hourly geomagnetic indices to reflect geomagnetic storm processes,and forecasting the Dst index constitutes a primary concern in modern space weather studies.This study leverages Long Short-Term Memory(LSTM)neural network methodology alongside solar wind parameters and Dst index data spanning from 2008 to 2022 to construct a predictive model for the Dst index.Two models are established:the LSTM model,modeling the entire temporal domain,and the Storm model,modeling solely data from storm periods.Employing the LSTM model for rolling forecasts of Dst index during 2001 to 2002 yields a correlation coefficient exceeding 0.94 and a root mean square error within 11 nT for forecasts ranging from 1 to 6 hours in advance.The Storm model effective-ly addresses the issue of pronounced forecast errors during storm periods,particularly during the main phase of intense storms(Dst<-100 nT),showcasing improved forecast accuracy.Forecasting experi-ments conducted on 23 strong storm events occurring during 2001―2002 demonstrate an enhancement in the correlation coefficient for forecasts made 6 hours in advance during storm periods,increasing from 0.902 with the LSTM model to 0.948 with the Storm model.Integration of both forecasting models into the LSTM-Storm model yields correlation coefficients above 0.95 and root mean square errors within 9 nT for Dst index forecasts,presenting a marked improvement in forecasting accuracy compared to the standalone LSTM model.

关键词

Dst指数预报/LSTM神经网络/预报模型/LSTM-Storm模型

Key words

Dst index prediction/LSTM neural network/Forecasting model/LSTM-Storm model

分类

天文与地球科学

引用本文复制引用

李绍文,牛俊,梅冰,姚俐竹,李炎斌..基于LSTM神经网络的Dst指数预报方法[J].空间科学学报,2025,45(3):641-652,12.

基金项目

国家重点研发计划项目资助(2023YFC2808904) (2023YFC2808904)

空间科学学报

OA北大核心

0254-6124

访问量0
|
下载量0
段落导航相关论文