| 注册
首页|期刊导航|控制理论与应用|ASM2:面向海空联合场景的多对手多智能体博弈算法

ASM2:面向海空联合场景的多对手多智能体博弈算法

王臆淞 赵铭慧 张雪波

控制理论与应用2025,Vol.42Issue(7):1275-1284,10.
控制理论与应用2025,Vol.42Issue(7):1275-1284,10.DOI:10.7641/CTA.2024.30220

ASM2:面向海空联合场景的多对手多智能体博弈算法

ASM2:Multi-agent multi-opponent game algorithm for joint sea-air scenarios

王臆淞 1赵铭慧 1张雪波1

作者信息

  • 1. 南开大学人工智能学院机器人与信息自动化研究所,天津市智能机器人技术重点实验室,天津 300350
  • 折叠

摘要

Abstract

In the intricate air-sea joint intelligent game environment,the situational information of the game environ-ment is high-dimensional and undergoes dynamic changes.This presents a significant challenge for achieving collaborative decision-making among heterogeneous combat units.Moreover,many of the existing algorithms grapple with issues of dimensionality explosion and suboptimal generalization.Addressing the challenge of facilitating collaborative decision-making through limited situational information becomes imperative.To tackle this,this paper introduces a formalized modeling approach for the air-sea joint intelligent game.This approach can holistically and effectively characterize the situational information,command and control heterogeneous combat units,and steer the algorithm training direction.Fur-thermore,we propose the ASM2(air-sea multi-opponent multi-agent proximal policy optimization)algorithm for air-sea joint gaming.Rooted in the multi-agent proximal policy optimization(MAPPO)distributed multi-agent gaming algorithm,ASM2 incorporates a multi-opponent multi-agent training framework embedded with the Elo scoring system,enhancing the model's generalization capabilities.Validation tests on a wargame simulation platform indicate that the model,once trained with our proposed algorithm,can adeptly handle various expert opponent strategies.It showcases commendable feasibility and generalization prowess,paving the way for bolstering the combat capabilities of future complex unmanned equipment.

关键词

无人系统智能对抗/兵棋推演/海空联合作战/智能控制/多智能体强化学习

Key words

intelligent confrontation of unmanned systems/wargame/air-sea joint operations/intelligent control/multi-agent reinforcement learning

引用本文复制引用

王臆淞,赵铭慧,张雪波..ASM2:面向海空联合场景的多对手多智能体博弈算法[J].控制理论与应用,2025,42(7):1275-1284,10.

基金项目

国家自然科学基金项目(62293510,62293513),天津市杰出青年科学基金项目(19JCJQJC62100),中央高校基本科研业务费项目资助.Supported by the National Natural Science Foundation of China(62293510,62293513),the National Science Fund for Distinguished Young Scholars of Tianjin(19JCJQJC62100)and the Fundamental Research Funds for the Central Universities. (62293510,62293513)

控制理论与应用

OA北大核心

1000-8152

访问量0
|
下载量0
段落导航相关论文