| 注册
首页|期刊导航|木材科学与技术|基于改进YOLOv8的树木年轮实例分割及信息检测方法

基于改进YOLOv8的树木年轮实例分割及信息检测方法

王品博 王雨晨 王双永 周海宾

木材科学与技术2025,Vol.39Issue(3):7-18,12.
木材科学与技术2025,Vol.39Issue(3):7-18,12.DOI:10.12326/j.2096-9694.2025008

基于改进YOLOv8的树木年轮实例分割及信息检测方法

Study on Tree Ring Instance Segmentation and Information Detection Based on Improved YOLOv8

王品博 1王雨晨 2王双永 2周海宾3

作者信息

  • 1. 中国林业科学研究院木材工业研究所,北京 100091||南京林业大学,江苏 南京 210037
  • 2. 中国林业科学研究院木材工业研究所,北京 100091
  • 3. 中国林业科学研究院木材工业研究所,北京 100091||古建筑木材科学研究与保护国家文物局重点科研基地,北京 100091
  • 折叠

摘要

Abstract

In climatology,ecology,and archaeology,tree rings hold irreplaceable value for studying environmental change and historical succession.To improve the efficiency and reduce human interference in traditional tree-ring detection,this study proposes DCW-YOLOv8,an instance segmentation model enhanced with dilation-wise residual(DWR)attention module,lightweight CARAFE upsampling,and dynamic Wise-IoU loss.A detection method using model-generated masks is designed to quantify ring counts and widths.The ablation and comparative experiments show DCW-YOLOv8 achieves superior mask mAP(86.4%for mAP@0.50,53.6%for mAP@0.50∶0.95)versus state-of-the-art models.Attention visualization confirms stronger focus on tree-ring features.Detection results include 86.2%count-accuracy,70%width measurements within±0.5 mm error,and a mean width error of 0.295 mm.This model provides a novel automated approach for tree-ring analysis.

关键词

树木年轮/深度学习/实例分割/年轮宽度/年轮数量

Key words

tree ring/deep learning/instance segmentation/ring width/ring number

分类

农业科技

引用本文复制引用

王品博,王雨晨,王双永,周海宾..基于改进YOLOv8的树木年轮实例分割及信息检测方法[J].木材科学与技术,2025,39(3):7-18,12.

基金项目

"十四五"国家重点研发计划课题"应县木塔本体信息采集、挖掘与数据模型构建"(2023YFF0906301). (2023YFF0906301)

木材科学与技术

OA北大核心

2096-9694

访问量0
|
下载量0
段落导航相关论文