| 注册
首页|期刊导航|西北工程技术学报|基于两次多元分解和筛选的风电功率预测方法

基于两次多元分解和筛选的风电功率预测方法

李昊 胡春生 巩豪委

西北工程技术学报2025,Vol.24Issue(2):118-129,12.
西北工程技术学报2025,Vol.24Issue(2):118-129,12.

基于两次多元分解和筛选的风电功率预测方法

Wind Power Prediction Method Based on Two-Stage Multivariate Decomposition and Feature

李昊 1胡春生 2巩豪委1

作者信息

  • 1. 宁夏大学机械工程学院,宁夏 银川 750021
  • 2. 宁夏大学机械工程学院,宁夏 银川 750021||宁夏大学 前沿交叉学院,宁夏 中卫 755000
  • 折叠

摘要

Abstract

To address the challenges of data noise and the insufficient utilization of multivariate coupling relationships in wind power prediction,a hybrid prediction model is proposed based on two-stage multivariate decomposition and feature selection.The proposed method first employs Multivariate Variational Mode Decomposition(MVMD)to decompose multivariate time series data into multi-scale components,with subsequent reconstruction of each variable's sub-modes into high-,medium-,and low-frequency components using sample entropy and hierarchical clustering.A secondary MVMD decomposition is then implemented on the high-frequency components for refined feature extraction.Innovatively,a two-stage feature screening mechanism based on the Granger causality test is introduced to effectively eliminate non-stationary sequences and components that lack causal relationships.Compared to the wind power prediction results from Long Short-Term Memory(LSTM)and Convolutional Neural Networks(CNN),the proposed method can reduce the Mean Absolute Error(MAE)by 89.8%and the Root Mean Square Error(RMSE)by 90.6%,significantly outperforming univariate decomposition methods.Meanwhile,the two-stage multivariate decomposition and screening approach can significantly improve the model's predictive accuracy compared to methods that do not utilize decomposition and those that use single-stage decomposition.The Diebold-Mariano test confirms that the proposed model outperforms all benchmark models at a 5%significance level,with the improvement rate stabilizing above 27%.This study proves that the hybrid model can significantly enhance data quality,thereby improving the results of wind power prediction and providing a new solution for high-precision wind power forecasting.

关键词

风电功率预测/深度学习/数据预处理/多元变分模态分解/数据筛选

Key words

wind power prediction/deep learning/data preprocessing/multivariational mode decomposition/data selec-tion

分类

信息技术与安全科学

引用本文复制引用

李昊,胡春生,巩豪委..基于两次多元分解和筛选的风电功率预测方法[J].西北工程技术学报,2025,24(2):118-129,12.

基金项目

宁夏重点研发计划项目(2024BEE02003) (2024BEE02003)

西北工程技术学报

1671-7244

访问量0
|
下载量0
段落导航相关论文