| 注册
首页|期刊导航|燃料化学学报(中英文)|单原子镍催化剂上CO还原NO反应机理:密度泛函理论与微观动力学研究

单原子镍催化剂上CO还原NO反应机理:密度泛函理论与微观动力学研究

赵妍 李响 王焕然 朱亚明 李先春

燃料化学学报(中英文)2025,Vol.53Issue(7):1061-1071,11.
燃料化学学报(中英文)2025,Vol.53Issue(7):1061-1071,11.DOI:10.1016/S1872-5813(24)60527-X

单原子镍催化剂上CO还原NO反应机理:密度泛函理论与微观动力学研究

Mechanism of NO reduction by CO over single atomic nickel catalyst:DFT and microkinetic study

赵妍 1李响 1王焕然 1朱亚明 2李先春2

作者信息

  • 1. 辽宁科技大学土木工程学院 辽宁鞍山 114051
  • 2. 辽宁科技大学化学工程学院 辽宁鞍山 114051
  • 折叠

摘要

Abstract

The microscopic reaction mechanism of NO reduction by CO on the graphene-supported single-atom Ni catalyst(Ni/G)was investigated by using density functional theory(DFT)and microkinetic modeling.The results indicate that as the most probably pathway for the NO reduction by CO over the Ni/G catalyst,two NO molecules adsorb onto the Ni atoms via the Langmuir-Hinshelwood mechanism and then transform to N2O and active oxygen(O*).Subsequently,N2O is adsorbed on the Ni surface and reduced to N2 and O*.Finally,CO reduces O*to form CO2,releasing the active Ni sites.From the energy barrier perspective,the transformation of NO to N2O and O*has a higher energy barrier,which controls the NO reduction reaction rate.From the microkinetic perspective,the reaction temperature has a significant effect on the rate of O*reduction with CO,which is lower than that of N2O reduction.As a result,the Ni atoms are gradually occupied by O*,which may inhibit the adsorption and reduction of NOx leading to the deactivation of the Ni/G catalyst.

关键词

单原子Ni催化剂/NO还原/催化反应机理/密度泛函理论/微观动力学

Key words

single-atom Ni catalyst/NO reduction/catalytic reaction mechanism/density functional theory/microkinetic

分类

能源科技

引用本文复制引用

赵妍,李响,王焕然,朱亚明,李先春..单原子镍催化剂上CO还原NO反应机理:密度泛函理论与微观动力学研究[J].燃料化学学报(中英文),2025,53(7):1061-1071,11.

基金项目

The project was supported by Key Technologies Research and Development Program(2022YFE0208100),Graduate Education Reform and Technological Innovation and Entrepreneurship Project of University of Science and Technology Liaoning(LKDYC202424).国家重点研发计划(2022YFE0208100)和辽宁科技大学研究生科技创新项目(LKDYC202424)资助 (2022YFE0208100)

燃料化学学报(中英文)

OA北大核心

2097-213X

访问量0
|
下载量0
段落导航相关论文