首页|期刊导航|四川大学学报(自然科学版)|磁流体方程保持严格无散条件的有限元

磁流体方程保持严格无散条件的有限元OA北大核心

A finite element for magneto-hydrodynamic equation preserving divergence-free condition

中文摘要英文摘要

本文对理想磁流体方程建立了一个有限元.该有限元在时间上采用隐式欧拉离散并利用Picard线性化方法进行解耦和线性化处理,在空间上则分别采用连续分片线性元逼近密度、流速及压力,用NE0 元和RT0元逼近电场和磁场.此外该有限元还添加了稳定项以弥补缺失的耗散项.本文证明,半离散格式是无条件能量稳定的,全离散格式能够保持磁场无散条件.数值算例验证了有限元的收敛性、能量稳定性及保持磁场无散条件的能力.

In this paper,a finite element is established for the magneto-hydrodynamics equation.In the finite element,the implicit Euler method is utilized for the time discretization and the Picard linearization method is utilized for the decoupling and linearization processing.For the spatial discretization,the continuous piecewise linear elements are employed to approximate the density,flow velocity and pressure,and the NE0 and RT0 el-ements are used to approximate the electric field and magnetic field,respectively.Besides,a stabilization term is added to compensate the lack of dissipation.The unconditional energy stability of the semi-discrete scheme as well as the preservation of divergence-free condition of the fully discrete scheme are proved.Nu-merical examples demonstrate the convergence,energy stability and preservation of divergence-free condition of the finite element.

唐豪杰;代佳佳;张世全;贺巧琳

四川大学数学学院,成都 610065西南交通大学数学学院,成都 611756四川大学数学学院,成都 610065四川大学数学学院,成都 610065

数理科学

有限元磁流体方程无散条件Euler方法

Finite elementMagneto-hydrodynamics equationDivergence-freeEuler method

《四川大学学报(自然科学版)》 2025 (4)

831-837,7

四川省自然科学基金(2023NSFSC0075)

10.19907/j.0490-6756.240037

评论