| 注册
首页|期刊导航|山东电力技术|基于深度确定性策略梯度算法的乡村光-沼虚拟电厂低碳调度方法

基于深度确定性策略梯度算法的乡村光-沼虚拟电厂低碳调度方法

王琛 孙哲夫 张自伟

山东电力技术2025,Vol.52Issue(7):14-26,53,14.
山东电力技术2025,Vol.52Issue(7):14-26,53,14.DOI:10.20097/j.cnki.issn1007-9904.2025.07.002

基于深度确定性策略梯度算法的乡村光-沼虚拟电厂低碳调度方法

Low-carbon Dispatching Method for Rural PV-biogas Virtual Power Plant Based on the Deep Deterministic Policy Gradient Algorithm

王琛 1孙哲夫 1张自伟1

作者信息

  • 1. 国网江苏省电力有限公司连云港供电分公司,江苏 连云港 222000
  • 折叠

摘要

Abstract

The biomass energy production and distributed photovoltaic(PV)power generation in rural areas of China have emerged as vital components of the rural energy structure.How to develop rural biomass resources according to local conditions,closely fit the natural conditions,resource endowments,and actual energy needs of rural areas,and improve the energy efficiency of rural PV-biogas coupling utilization is an urgent problem to be solved.In this paper,firstly,the dynamic quantitative modeling of biogas energy system is carried out,a dynamic model of biogas energy system coupled with distributed PV power generation system is established based on improving the low-carbon economic operation demand of PV-biogas virtual power plant in rural areas.Considering the multiple uncertainties of biogas energy system and photovoltaic unit output in rural areas,an uncertainty set is established for PV-biogas energy supply entities.Furthermore,considering the low-carbon operation cost of the PV-biogas virtual power plant,based on the day-ahead scheduling,a data-driven real-time scheduling method based on the deep deterministic policy gradient(DDPG)algorithm is proposed.With the minimum low-carbon operation cost and scheduling cost of the virtual power plant as the optimization goal,the centralized and distributed PV and biogas resources in the PV-biogas virtual power plant in rural areas are integrated.Finally,the rationality and effectiveness of the proposed low-carbon scheduling method for PV-biogas virtual power plant are verified by the example results.

关键词

低碳调度/光-沼耦合/虚拟电厂/数据驱动/多重不确定性

Key words

low carbon scheduling/PV-biogas coupling/virtual power plant/data-driven/multiple uncertainties

分类

信息技术与安全科学

引用本文复制引用

王琛,孙哲夫,张自伟..基于深度确定性策略梯度算法的乡村光-沼虚拟电厂低碳调度方法[J].山东电力技术,2025,52(7):14-26,53,14.

基金项目

国网江苏省电力有限公司科技项目(J2023168). Science and Technology Foundation of State Grid Jiangsu Electric Power Company(J2023168). (J2023168)

山东电力技术

1007-9904

访问量0
|
下载量0
段落导航相关论文