| 注册
首页|期刊导航|水科学进展|融合潜在蒸散发的黄河源区径流模拟

融合潜在蒸散发的黄河源区径流模拟

荐圣淇 周肖宇 余欣 王嘉仪 裴熠楠

水科学进展2025,Vol.36Issue(3):397-411,15.
水科学进展2025,Vol.36Issue(3):397-411,15.DOI:10.14042/j.cnki.32.1309.2025.03.004

融合潜在蒸散发的黄河源区径流模拟

Runoff simulation incorporating potential evapotranspiration in the Yellow River source region

荐圣淇 1周肖宇 1余欣 2王嘉仪 2裴熠楠1

作者信息

  • 1. 郑州大学水利与交通学院,河南郑州 450001
  • 2. 黄河水利委员会黄河水利科学研究院,河南郑州 450003
  • 折叠

摘要

Abstract

This study addresses the challenges posed by complex hydrological conditions and limited accuracy in runoff simulations in the source region of the Yellow River.We develop a runoff simulation method that integrates potential evapotranspiration(PET)predictions to improve the reliability of runoff modeling in alpine areas.Three machine learning approaches-Random Forest(RF),Multilayer Perceptron(MLP),and Extreme Learning Machine(ELM)—were employed,along with deep learning models LSTM and PatchTST.These models incorporated PET predictions for runoff simulations and evaluated PET simulation performance under different combinations of meteorological factors.The key findings are as follows:① Maximum temperature emerged as the primary driver of PET simulation,with optimal accuracy achieved by combining maximum temperature,relative humidity,and wind speed.②Among the deep learning models,although PatchTST underperformed compared to LSTM in predicting one-month-ahead PET,it exhibited superior performance in multi-step forecasting.③Model performance improved significantly after the integration of PET predictions.For example,the Nash-Sutcliffe efficiency coefficient for the PatchTST model at Tangnaihai station increased from 0.706 to 0.896(a 26.9%improvement).The mean absolute percentage error decreased from 23.502 to 18.305(a 22.1%reduction),while the root mean square error dropped from 276.7 to 160.8(a 41.9%reduction).These results indicate that PET data effectively capture the dynamic impact of evapotranspiration on runoff loss,providing a more precise solution for hydrological forecasting in data-scarce alpine regions.

关键词

潜在蒸散发模拟/径流模拟/机器学习/黄河源区

Key words

potential evapotranspiration simulation/runoff simulation/machine learning/the source region of the Yellow River

分类

天文与地球科学

引用本文复制引用

荐圣淇,周肖宇,余欣,王嘉仪,裴熠楠..融合潜在蒸散发的黄河源区径流模拟[J].水科学进展,2025,36(3):397-411,15.

基金项目

国家重点研发计划项目(2023YFC3209303) The study is financially supported by the National Key R&D Program of China(No.2023YFC3209303). (2023YFC3209303)

水科学进展

OA北大核心

1001-6791

访问量0
|
下载量0
段落导航相关论文