| 注册
首页|期刊导航|水力发电学报|混凝土坝变形规律智能识别与异常检测方法研究

混凝土坝变形规律智能识别与异常检测方法研究

马春辉 焦玉菲 杨杰 徐笑颜 程琳 龚秀秀

水力发电学报2025,Vol.44Issue(7):36-46,11.
水力发电学报2025,Vol.44Issue(7):36-46,11.DOI:10.11660/slfdxb.20250702

混凝土坝变形规律智能识别与异常检测方法研究

Study on intelligent recognition of deformation patterns and anomaly detection method of concrete dams

马春辉 1焦玉菲 1杨杰 1徐笑颜 1程琳 1龚秀秀2

作者信息

  • 1. 西安理工大学 省部共建西北旱区生态水利国家重点实验室,西安 710048||西安理工大学 水利水电学院,西安 710048
  • 2. 宁夏回族自治区农田水利建设与开发整治中心,银川 750000
  • 折叠

摘要

Abstract

During the operation of a concrete dam,various uncertainties-such as sudden events,natural disasters,and changes in human management-are possible to impose an impact on it,potentially deviating its structure deformation from the conventional patterns.An accurate identification of such changes is crucial for raising the level of concrete dam warning and forecasting.This paper presents an intelligent method for identifying dam deformation under uncertainties.First,we use a spatial clustering method to categorize measurement points that are located in different regions of the concrete dam structure but share certain similarity.Then,a fuzzy clustering(Gath-Geva)algorithm is used to segment a multivariate time series into different phases,allowing its data points to belong to multiple periods based on the membership degree,to measure the homogeneity of segments and detect changes in its hidden structure.Last,we use a fuzzy decision algorithm based on the cluster compatibility criteria to determine the number of segments required,and adopts the principal component analysis(PCA)to identify the number of principal components,further improving the accuracy of the Gath-Geva algorithm.This intelligent method has been applied in a case study of a concrete arch dam structure to identify the changes hidden in the time series of its displacement measurements.Comparison of its results with those of single-period data shows that it is effective in extracting sudden anomalous changes during the operational phase of the dam,and that it is a valuable approach for assessing the operational conditions of concrete dams.

关键词

水利工程/大坝安全监控/Gath-Geva/时间序列分析/统计模型

Key words

hydro-engineering/dam safety monitoring/Gath-Geva/time series analysis/statistical model

分类

建筑与水利

引用本文复制引用

马春辉,焦玉菲,杨杰,徐笑颜,程琳,龚秀秀..混凝土坝变形规律智能识别与异常检测方法研究[J].水力发电学报,2025,44(7):36-46,11.

基金项目

国家自然科学基金(52409173) (52409173)

陕西省教育厅重点科学研究计划项目(23JY058) (23JY058)

西安市自然科学基金项目(2025JH-ZRKX-0411) (2025JH-ZRKX-0411)

水力发电学报

OA北大核心

1003-1243

访问量0
|
下载量0
段落导航相关论文