| 注册
首页|期刊导航|水生生物学报|基于麻雀搜索算法优化BP神经网络的叶绿素a浓度反演:以小江为例

基于麻雀搜索算法优化BP神经网络的叶绿素a浓度反演:以小江为例

潘炜 李渊 米武娟 段思宇 张羽珩 黄宇波 田楚铭 景晓萱 朱宇轩 毕永红

水生生物学报2025,Vol.49Issue(8):1-12,12.
水生生物学报2025,Vol.49Issue(8):1-12,12.DOI:10.3724/1000-3207.2025.2024.0484

基于麻雀搜索算法优化BP神经网络的叶绿素a浓度反演:以小江为例

OPTIMIZATION OF BP NEURAL NETWORK FOR CHLOROPHYLL-A CONCENTRATION INVERSION BASED ON SPARROW SEARCH ALGORITHM:A CASE STUDY OF XIAOJIANG

潘炜 1李渊 2米武娟 3段思宇 2张羽珩 3黄宇波 4田楚铭 3景晓萱 1朱宇轩 3毕永红3

作者信息

  • 1. 太原科技大学环境与资源学院,太原 030024||中国科学院水生生物研究所,武汉 430072
  • 2. 太原科技大学环境与资源学院,太原 030024
  • 3. 中国科学院水生生物研究所,武汉 430072
  • 4. 中国长江三峡集团有限公司流域枢纽运行管理中心,宜昌 443133
  • 折叠

摘要

Abstract

Chlorophyll-a concentration is a crucial parameter characterizing water ecological environment quality.To address the issues of traditional Back Propagation(BP)neural networks,which are highly sensitive to initial values and tendency to local optima in chlorophyll-a inversion,this study proposes an SSA-BP inversion model optimized by using the Sparrow Search Algorithm(SSA).A novel inversion model was constructed by integrating remote sensing data from the DJI RTK300 UAV equipped with an AFX-10 hyperspectral camera and synchronous ground sampling data from the Xiaojiang backwater area.The results demonstrate that:(1)The application of Savitzky-Golay(SG)smoothing significantly improved spectral data quality,increasing the determination coefficient(R2)of the SSA-BP model to 0.98;(2)Compared with traditional BP neural networks,the SSA-BP model showed comprehensive improve-ment in inversion accuracy,with the Quma water area exhibiting a 59.14%reduction in Mean Absolute Error(MAE),60.78%decrease in Root Mean Square Error of Prediction(RMSEP),and 57.32%increase in Relative Percent Diffe-rence(RPD);(3)The SSA-BP model overcame the performance degradation of traditional BP models in low-concen-tration regions(where R2 decreased from 0.94 to 0.76),maintaining stable high precision across different chlorophyll-a concentration gradients,with the highest R2 reaching 0.98.This research confirms that the SSA-BP model significantly enhances the accuracy and adaptability of UAV hyperspectral remote sensing in chlorophyll-a inversion,providing a reliable technical approach for ecological environment monitoring in inland water bodies.

关键词

麻雀搜索算法/BP神经网络/回水区/叶绿素a浓度/高光谱

Key words

Sparrow search algorithm/BP neural network/Backwater area/Chlorophyll a concentration/Hyperspectral

分类

农业科技

引用本文复制引用

潘炜,李渊,米武娟,段思宇,张羽珩,黄宇波,田楚铭,景晓萱,朱宇轩,毕永红..基于麻雀搜索算法优化BP神经网络的叶绿素a浓度反演:以小江为例[J].水生生物学报,2025,49(8):1-12,12.

基金项目

中国长江三峡集团有限公司项目(0711635/0711636)资助[Supported by the China Three Gorges Corporation(0711635/0711636)] (0711635/0711636)

水生生物学报

OA北大核心

1000-3207

访问量0
|
下载量0
段落导航相关论文