| 注册
首页|期刊导航|山西农业大学学报(自然科学版)|基于Fert-YOLO的高粱育性检测模型研究

基于Fert-YOLO的高粱育性检测模型研究

赵泽阳 段有厚 卢峰 柯福来 朱凯 杨琳琳 张飞

山西农业大学学报(自然科学版)2025,Vol.45Issue(4):46-56,11.
山西农业大学学报(自然科学版)2025,Vol.45Issue(4):46-56,11.DOI:10.13842/j.cnki.issn1671-8151.202503051

基于Fert-YOLO的高粱育性检测模型研究

Research on a sorghum fertility detection model based on Fert-YOLO

赵泽阳 1段有厚 1卢峰 1柯福来 1朱凯 1杨琳琳 1张飞1

作者信息

  • 1. 辽宁省农业科学院 高粱研究所,辽宁 沈阳 110161
  • 折叠

摘要

Abstract

[Objective]As an important crop for both food and energy production,sorghum's fertility detection is crucial for vari-ety breeding and yield improvement.However,traditional detection methods suffer from low efficiency due to complex field backgrounds,necessitating highly efficient and accurate detection technologies.[Method]This study proposed Fert-YOLO,a lightweight detection model for sorghum fertility,based on YOLOv8n.First,multiple offline data augmentation methods were used to enhance data diversity and improve the model's generalization ability.Second,to reduce network complexity while ef-fectively improving detection performance,StarNet was used to replace YOLOv8n's backbone feature extraction network.In the feature fusion stage,the C2F module was redesigned by incorporating mixed local channel attention(MLCA)mechanism,strengthening the network's ability to capture critical features.Finally,a lightweight shared convolution detection(LSCD)head was introduced,which shared convolutional layer parameters to significantly reduce model size and complexity.[Results]The Fert-YOLO model demonstrated outstanding performance in sorghum fertility detection.Compared to the original YO-LOv8n model,it achieved a 1.5%improvement in mean average precision(Map0.5),further enhancing detection accuracy.Ad-ditionally,the model's,floating-point operations per second(FLOPs)and parameters were reduced by 40.0%and 47.8%,respectively,significantly improving inference speed and deployment efficiency.When compared to other common single-stage lightweight detection models,Fert-YOLO showed clear advantages in both detection accuracy and model efficiency.[Conclu-sion]This research provided a reliable technical support for efficient sorghum fertility detection in field conditions,contributing significantly to smart sorghum breeding and precision agriculture.

关键词

高粱/育性检测/YOLOv8n/模型优化

Key words

Sorghum/Fertility detection/YOLOv8n/Model optimization

分类

农业科技

引用本文复制引用

赵泽阳,段有厚,卢峰,柯福来,朱凯,杨琳琳,张飞..基于Fert-YOLO的高粱育性检测模型研究[J].山西农业大学学报(自然科学版),2025,45(4):46-56,11.

基金项目

国家现代农业产业技术体系高粱栽培岗位(CARS-06-13.5-A22) (CARS-06-13.5-A22)

国家现代农业产业技术体系辽宁高粱创新团队项目 ()

辽宁省藏粮于技重大专项(2023020405-JH1/102) (2023020405-JH1/102)

沈阳种业创新性专项(24-215-2-02) (24-215-2-02)

山西农业大学学报(自然科学版)

OA北大核心

1671-8151

访问量0
|
下载量0
段落导航相关论文